設(shè)F1F2分別是雙曲線=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P滿足|PF2|=|F1F2|,且cos∠PF1F2,則雙曲線的漸近線方程為(  )

A.3x±4y=0                                                 B.3x±5y=0

C.4x±3y=0                                                 D.5x±4y=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)O點(diǎn)為坐標(biāo)原點(diǎn),曲線x2y2+2x-6y+1=0上有兩點(diǎn)P、Q關(guān)于直線xmy+4=0對(duì)稱,且=0.

(1)求m的值;

(2)求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)AB分別為雙曲線=1(a>0,b>0)的左,右頂點(diǎn),雙曲線的實(shí)軸長為4,焦點(diǎn)到漸近線的距離為.

(1)求雙曲線的方程;

(2)已知直線yx-2與雙曲線的右支交于M、N兩點(diǎn),且在雙曲線的右支上存在點(diǎn)D,使得,求t的值及點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線=1(a>0,b>0)的離心率為2,一個(gè)焦點(diǎn)與拋物線y2=16x的焦點(diǎn)相同,則雙曲線的方程為(  )

A.=1                                            B.=1

C.=1                                            D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若雙曲線Ey2=1(a>0)的離心率等于,直線ykx-1與雙曲線E的右支交于AB兩點(diǎn).

(1)求k的取值范圍;

(2)若|AB|=6,點(diǎn)C是雙曲線上一點(diǎn),且,求k,m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知斜率為1的直線l與雙曲線C=1(a>0,b>0)相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1,3).

(1)求C的離心率;

(2)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17,證明:過A、B、D三點(diǎn)的圓與x軸相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


若點(diǎn)P到點(diǎn)F(0,2)的距離比它到直線y+4=0的距離小2,則點(diǎn)P的軌跡方程為(  )

A.y2=8x                                   B.y2=-8x

C.x2=8y                                                     D.x2=-8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


過拋物線y2=8x的焦點(diǎn)F作傾斜角為135°的直線交拋物線于A、B兩點(diǎn),則弦AB的長為(  )

A.4                                                     B.8    

C.12                                                     D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知一個(gè)四棱錐PABCD的三視圖(主視圖與左視圖為直角三角形,俯視圖是帶有一條對(duì)角線的正方形)如下,E是側(cè)棱PC的中點(diǎn).

(1)求四棱錐PABCD的體積;

(2)求證:平面APC⊥平面BDE.

查看答案和解析>>

同步練習(xí)冊答案