【題目】設(shè)A、B是拋物線y2=8x上的兩點,A與B的縱坐標之和為8.
(1)求直線AB的斜率;
(2)若直線AB過拋物線的焦點F,求|AB|.
【答案】(1)1;(2)16.
【解析】
(1)設(shè)A(x1,y1),B(x2,y2),有y12=8x1,y22=8x2,結(jié)合縱坐標之和為8,兩式相減即可求得斜率;
(2)結(jié)合(1)寫出直線方程,聯(lián)立直線方程和拋物線方程,根據(jù)|AB|=(x1+x2)+p即可求得弦長.
(1)根據(jù)題意,設(shè)A(x1,y1),B(x2,y2),
則有y12=8x1,y22=8x2,
兩式相減,得(y1﹣y2)(y1+y2)=8(x1﹣x2).
又y1+y2=8,
則k1,直線AB的斜率為1
(2)由題可知F(2,0),則直線AB的方程為y=x﹣2,
代入y2=8x消去y并整理,得x2﹣12x+4=0,
有x1+x2=12,
由弦長公式得|AB|=(x1+x2)+p=16.
科目:高中數(shù)學 來源: 題型:
【題目】圓周率是一個在數(shù)學及物理學中普遍存在的數(shù)學常數(shù),它既常用又神秘,古今中外很多數(shù)學家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數(shù)然后請他們各自檢查一下,所得的兩數(shù)與1是否能構(gòu)成一個銳角三角形的三邊,最后把結(jié)論告訴你,只需將每個人的結(jié)論記錄下來就能算出圓周率的近似值.假設(shè)有個人說“能”,而有個人說“不能”,那么應(yīng)用你學過的知識可算得圓周率的近似值為()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)下面給出的2008年至2017年某地二氧化碳年排放量(單位:萬噸)柱形圖,以下結(jié)論中不正確的是( )
A.逐年比較,2012年減少二氧化碳排放量的效果最顯著
B.2011年該地治理二氧化碳排放顯現(xiàn)成效
C.2010年以來該地二氧化碳年排放量呈減少趨勢
D.2010年以來該地二氧化碳年排放量與年份正相關(guān)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知下面四個命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題存在,使得,則:任意,都有
④若且為假命題,則均為假命題,其中真命題個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在實數(shù)集上的可導(dǎo)函數(shù)是偶函數(shù),若對任意實數(shù)都有恒成立,則使關(guān)于的不等式成立的數(shù)的取值范圍為( )
A.B.(-1,1)C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓+=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.
(1)求橢圓的標準方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年7月1日迎來了我國建黨98周年,6名老黨員在這天相約來到革命圣地之一的西柏坡.6名老黨員中有3名黨員當年在同一個班,他們站成一排拍照留念時,要求同班的3名黨員站在一起,且滿足條件的每種排法都要拍一張照片,若將照片洗出來,每張照片0.5元(不含過塑費),且有一半的照片需要過塑,每張過塑費為0.75元.若將這些照片平均分給每名老黨員(過塑的照片也要平均分),則每名老黨員需要支付的照片費為( )
A.20.5B.21元C.21.5元D.22元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lg(2+x)+lg(2﹣x).
(1)求函數(shù)f(x)的定義域并判斷函數(shù)f(x)的奇偶性;
(2)記函數(shù)g(x)= +3x,求函數(shù)g(x)的值域;
(3)若不等式 f(x)>m有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com