【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù),為直線的傾斜角).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并在兩個(gè)坐標(biāo)系下取相同的長度單位.

1)當(dāng)時(shí),求直線的極坐標(biāo)方程;

2)若曲線和直線交于兩點(diǎn),且,求直線的傾斜角.

【答案】1;(2

【解析】

1)將代入直線的參數(shù)方程后,消去參數(shù),可得直線的一般方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可求出其極坐標(biāo)方程;

2)先將曲線的參數(shù)方程化為普通方程,再將直線的參數(shù)方程代入,利用參數(shù)的幾何意義以及弦長公式即可表示出,即可解出直線的傾斜角.

1)由,則其極坐標(biāo)方程,

.

2)由.

代入圓的方程中,

化簡得.

設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,則,,

.

,故,解得.

則直線的傾斜角為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖象關(guān)于直線對(duì)稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)( )

A.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變

B.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變

C.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變

D.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:①函數(shù)

②向量,,且,

③函數(shù)的圖象經(jīng)過點(diǎn)

請(qǐng)?jiān)谏鲜鋈齻(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并解答.

已知_________________,且函數(shù)的圖象相鄰兩條對(duì)稱軸之間的距離為.

1)若,且,求的值;

2)求函數(shù)上的單調(diào)遞減區(qū)間.

注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓臺(tái)O1O2的軸截面為等腰梯形A1A2B2B1A1A2B1B2,A1A22B1B2,A1B12,圓臺(tái)O1O2的側(cè)面積為6π.若點(diǎn)C,D分別為圓O1O2上的動(dòng)點(diǎn)且點(diǎn)C,D在平面A1A2B2B1的同側(cè).

1)求證:A1CA2C

2)若∠B1B2C60°,則當(dāng)三棱錐CA1DA2的體積取最大值時(shí),求A1D與平面CA1A2所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)|2x4||x3|.

(1)解關(guān)于x的不等式f(x)<8;

(2)對(duì)于正實(shí)數(shù)a,b,函數(shù)g(x)f(x)3a4b只有一個(gè)零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn)是線段的中點(diǎn),直線軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年,山東省高考將全面實(shí)行“”的模式(即:語文、數(shù)學(xué)、外語為必考科目,剩下的物理、化學(xué)、歷史、地理、生物、政治六科任選三科進(jìn)行考試).為了了解學(xué)生對(duì)物理學(xué)科的喜好程度,某高中從高一年級(jí)學(xué)生中隨機(jī)抽取人做調(diào)查.統(tǒng)計(jì)顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有.

1)據(jù)此資料判斷是否有的把握認(rèn)為“喜歡物理與性別有關(guān)”;

2)為了了解學(xué)生對(duì)選科的認(rèn)識(shí),年級(jí)決定召開學(xué)生座談會(huì).現(xiàn)從名男同學(xué)和名女同學(xué)(其中女喜歡物理)中,選取名男同學(xué)和名女同學(xué)參加座談會(huì),記參加座談會(huì)的人中喜歡物理的人數(shù)為,求的分布列及期望.

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“金鑲玉”是北京奧運(yùn)會(huì)的獎(jiǎng)牌設(shè)計(jì)所采用的式樣,喻示中國傳統(tǒng)文化中的“金玉良緣”,體現(xiàn)了中國人對(duì)奧林匹克精神的禮贊和對(duì)運(yùn)動(dòng)員的褒獎(jiǎng).它的設(shè)計(jì)方案,創(chuàng)意十分新穎,突破了以往任何一屆奧運(yùn)會(huì)獎(jiǎng)牌設(shè)計(jì)單一材質(zhì)的傳統(tǒng),又融入了典型的中國文化元素,是中國文化與體育精神完美結(jié)合的載體.現(xiàn)有一矩形玉片,毫米,32毫米,的中點(diǎn).現(xiàn)要開槽鑲嵌金絲,將其加工為鑲金工藝品,如圖,金絲部分為優(yōu)弧和線段其中優(yōu)弧所在圓的圓心為,圓與矩形的邊分別相切于點(diǎn)以及點(diǎn)在線段上(的左側(cè)),分別于圓相切于點(diǎn).若優(yōu)弧部分鑲嵌的金絲每毫米造價(jià)為元(),線段部分鑲嵌的金絲每毫米造價(jià)為元.記銳角鑲嵌金絲的總造價(jià)為元.

1)試表示出關(guān)于的函數(shù)并寫出的范圍;

2)當(dāng)鑲嵌金絲的總造價(jià)最低時(shí),求出四邊形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案