已知定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)成中心對稱,對任意實數(shù)x都有f(x)=-,且f(-1)=1,f(0)=-2,則f(0)+f(1)+…+f(2013)=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-7練習(xí)卷(解析版) 題型:填空題
已知x>0,y>0,lg 2x+lg 8y=lg 2,則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-4練習(xí)卷(解析版) 題型:填空題
設(shè)y=f(x)是某港口水的深度y(米)關(guān)于時間t(時)的函數(shù),其中0≤t≤24.下表是該港口某一天從0時至24時記錄的時間t與水深y的關(guān)系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=h+Asin (ω+φ)的圖象,寫出最能近似表示表中數(shù)據(jù)間對應(yīng)關(guān)系的函數(shù)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-3練習(xí)卷(解析版) 題型:填空題
若 =3+ln 2(a>1),則a的值是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-3練習(xí)卷(解析版) 題型:選擇題
如圖,由曲線y=x2和直線y=t2(0<t<1),x=1,x=0所圍成的圖形(陰影部分)的面積的最小值是( ).
A. B. C.1 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-2練習(xí)卷(解析版) 題型:選擇題
已知f(x)是定義在R上的奇函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2]時,f(x)=ex-1,則f(2 013)+f(-2 014)=( ).
A.1-e B.e-1
C.-1-e D.e+1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-2練習(xí)卷(解析版) 題型:選擇題
若奇函數(shù)f(x)在(0,+∞)上的解析式是f(x)=x(1-x),則在(-∞,0)上,f(x)的解析式是( ).
A.f(x)=-x(1-x) B.f(x)=x(1+x)
C.f(x)=-x(1+x) D.f(x)=x(1-x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-11練習(xí)卷(解析版) 題型:填空題
在區(qū)間[0,4]內(nèi)隨機(jī)取兩個數(shù)a、b,則使得函數(shù)f(x)=x2+ax+b2有零點(diǎn)的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān) Word版訓(xùn)練3-x3練習(xí)卷(解析版) 題型:選擇題
已知向量a=(2,1),b=(-2,k),且a⊥(2a-b),則實數(shù)k=( ).
A.-14 B.-6 C.6 D.14
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com