【題目】拋物線C:y2=2x的準線方程是 , 經(jīng)過點P(4,1)的直線l與拋物線C相交于A,B兩點,且點P恰為AB的中點,F(xiàn)為拋物線的焦點,則 =

【答案】x=﹣ ;9
【解析】解:拋物線C:y2=2x的準線方程是x=﹣ ,它的焦點F( ,0).
過A作AM⊥直線l,BN⊥直線l,PK⊥直線l,M、N、K分別為垂足,
則由拋物線的定義可得|AM|+|BN|=|AF|+|BF|.
再根據(jù)P為線段AB的中點, (|AM|+|BN|)=|PK|= ,∴|AF|+|BF|=9,
故答案為:
根據(jù)拋物線的標準方程求得準線方程和焦點坐標,利用拋物線的定義把|AF|+|BF|轉化為|AM|+|BN|,再轉化為2|PK|,從而得出結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正三棱柱的各條棱長均相等, 的中點, 分別是線段和線段上的動點(含端點),且滿足.當運動時,下列結論中不正確的是( )

A. 平面平面 B. 三棱錐的體積為定值

C. 可能為直角三角形 D. 平面與平面所成的銳二面角范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中, 為常數(shù), 為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調性;

(2)設曲線處的切線為,當時,求直線軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若對任意的a∈(﹣3,+∞),關于x的方程f(x)=kx都有3個不同的根,則k等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列,其前項和為.

(1)若對任意的, , , 組成公差為4的等差數(shù)列,且,求;

(2)若數(shù)列是公比為)的等比數(shù)列, 為常數(shù),

求證:數(shù)列為等比數(shù)列的充要條件為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈R,使得f(x2)≤g(x1)成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙等五名奧運志愿者被隨機地分到A,B,C,D四個不同的崗位服務,每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務的概率;
(2)求甲、乙兩人不在同一個崗位服務的概率;
(3)設隨機變量ξ為這五名志愿者中參加A崗位服務的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市某礦山企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件該產(chǎn)品需另投入萬元,設該企業(yè)年內共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關于產(chǎn)品年產(chǎn)量(千件)的函數(shù)關系式;

(Ⅱ)問:年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程和曲線的普通方程;

(2)求直線與曲線的交點的直角坐標.

查看答案和解析>>

同步練習冊答案