考點:三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:(1)當sin(2x+
)分別取1和-1時,函數(shù)取最大值和最小值,代入計算可得;
(2)配方可得y=-(cosx-
)
2+2,由二次函數(shù)區(qū)間的最值可得;
(3)變形可得y=3-
,由反比例函數(shù)的單調性易得;
(4)由x的范圍結合三角函數(shù)的性質逐步可得y的范圍,即得答案.
解答:
解:(1)當sin(2x+
)=1時,y=2sin(2x+
)+1取最大值3;
當sin(2x+
)=-1時,y=2sin(2x+
)+1取最小值-1;
(2)配方可得y=-cos
2x+cosx+
=-(cosx-
)
2+2,
故當cosx=
時,原函數(shù)取最大值2,
當cosx=-1時,原函數(shù)取最小值-
;
(3)y=
=
=3-
,
當sinx=-1時,原函數(shù)取最小值-4,
當sinx=1時,原函數(shù)取最大值
;
(4)∵x∈[-
,
],∴2x+
∈[-
,
],
∴cos(2x+
)∈[-
,1],∴-4cos(2x+
)∈[-4,2],
∴y=3-4cos(2x+
)∈[-1,5],
∴y=3-4cos(2x+
),x∈[-
,
]的最大值和最小值分別為5和-1
點評:本題考查三角函數(shù)的最值,涉及二次函數(shù)區(qū)間的最值,屬基礎題.