【題目】某百貨公司1~6月份的銷售量x與利潤y的統(tǒng)計(jì)數(shù)據(jù)如表:

月份

1

2

3

4

5

6

銷售量x(萬件)

10

11

13

12

8

6

利潤y(萬元)

22

25

29

26

16

12

(參考公式: = )= ,
(1)根據(jù)2~5月份的統(tǒng)計(jì)數(shù)據(jù),求出y關(guān)于x的回歸直線方程
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過2萬元,則認(rèn)為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?

【答案】
(1)解:∵ =11, =24,

= ,

=﹣ ,

故y關(guān)于x的方程是: = x﹣


(2)解:∵x=10時(shí), = ,

誤差是| ﹣22|= <1,

x=6時(shí), = ,誤差是| ﹣12|= <1,

故該小組所得線性回歸方程是理想的


【解析】(1)求出 ,由公式,得 的值,從而求出 的值,從而得到y(tǒng)關(guān)于x的線性回歸方程,(2)由(1)能求出該小組所得線性回歸方程是理想的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,.

1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對(duì)應(yīng)邊分別是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.
(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面積;
(2)求AB邊上的中線長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+(y﹣1)2=9,直線l:x﹣my+m﹣2=0,且直線l與圓C相交于A、B兩點(diǎn). (Ⅰ)若|AB|=4 ,求直線l的傾斜角;
(Ⅱ)若點(diǎn)P(2,1)滿足 = ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在直線x+y﹣1=0上且過點(diǎn)A(2,2)的圓C1與直線3x﹣4y+5=0相切,其半徑小于5.
(1)若C2圓與圓C1關(guān)于直線x﹣y=0對(duì)稱,求圓C2的方程;
(2)過直線y=2x﹣6上一點(diǎn)P作圓C2的切線PC,PD,切點(diǎn)為C,D,當(dāng)四邊形PCC2D面積最小時(shí),求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為正方形的四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,PA⊥AD,PA=AD,則異面直線PB與AC所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),對(duì)于x∈R,都有 ,且滿足f(4)>﹣2, ,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|2a﹣x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若存在實(shí)數(shù)a∈[﹣2,2],使得關(guān)于x的方程f(x)﹣tf(2a)=0有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,側(cè)面PAD是正三角形,底面ABCD是菱形,∠BAD=60°,設(shè)平面PAD∩平面PBC=l.
(Ⅰ)求證:l∥平面ABCD;
(Ⅱ)求證:PB⊥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案