【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實數(shù),使得有兩個相異零點?若存在,求出的取值范圍;若不存在,請說明理由.

【答案】(1) ①當時,函數(shù)無極值.②當,函數(shù)有極小值為,無極大值;(2)存在,

【解析】

(1)對函數(shù)求導,根據(jù)的不同取值范圍,進行分類討論,求出函數(shù)的極值;

(2)根據(jù)的不同取值范圍,進行分類討論,結合、函數(shù)的極值的大小、(1)中的結論,最后求出的取值范圍.

解:(1)因為,所以.

①當時,

所以時,,所以函數(shù)上單調遞減.

此時,函數(shù)無極值.

②當,,得,

時,,所以函數(shù)上單調遞減;

時,,所以函數(shù)上單調遞增.

此時,函數(shù)有極小值為,無極大值.

(2)存在實數(shù),使得有兩個相異零點.

由(1)知:①當,函數(shù)上單調遞減;

,所以此時函數(shù)僅有一個零點;

②當時,.

因為,則由(1)知;

,令,

易得,所以單調遞減,

所以,所以.

此時,函數(shù)上也有一個零點.

所以,當,函數(shù)有兩個相異零點.

③當,,

此時函數(shù)僅有一個零點.

④當,,因為,則由(1)知;

令函數(shù),易得,

所以,所以,即.

,所以函數(shù)上也有一個零點,

所以,當,函數(shù)有兩個相異零點.

綜上所述,當時,函數(shù)有兩個相異零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)直線軸的交點為,經過點的直線與曲線交于兩點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在等腰中,,分別為,的中點,的中點,在線段上,且。將沿折起,使點的位置(如圖2所示),且。

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為__________

【答案】

【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當a<0時,則平行AC直線即可故a=-2,當a>0時,則直線平行AB即可,故a=1

點睛:線性規(guī)劃為?碱}型,解決此題務必要理解最優(yōu)解個數(shù)為無數(shù)個時的條件是什么,然后根據(jù)幾何關系求解即可

型】填空
束】
16

【題目】《數(shù)書九章》三斜求積術:“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實,一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術”即方法.以, , 分別表示三角形的面積,大斜,中斜,小斜; , 分別為對應的大斜,中斜,小斜上的高;則 .若在, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且

)求數(shù)列的通項公式;

)若數(shù)列滿足,求數(shù)列的通項公式;

)在()的條件下,設,問是否存在實數(shù)使得數(shù)列是單調遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某制藥廠準備投入適當?shù)膹V告費,對產品進行宣傳,在一年內,預計年銷量Q(萬件)與廣告費x(萬元)之間的函數(shù)關系為Qx≥0).已知生產此產品的年固定投入為3萬元,每生產1萬件此產品仍需后期再投入32萬元,若每件售價為年平均每件投入的150%”年平均每件所占廣告費的50%”之和(注:投入包括年固定投入后期再投入).

1)試將年利潤w萬元表示為年廣告費x萬元的函數(shù),并判斷當年廣告費投入100萬元時,企業(yè)虧損還是盈利?

2)當年廣告費投入多少萬元時,企業(yè)年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校數(shù)學建模小組為了研究雙層玻璃窗戶中每層玻璃厚度(每層玻璃的厚度相同)及兩層玻璃間夾空氣層厚度對保溫效果的影響,利用熱傳導定律得到熱傳導量滿足關系式:,其中玻璃的熱傳導系數(shù)焦耳/(厘米度),不流通、干燥空氣的熱傳導系數(shù)焦耳/(厘米度), 為室內外溫度差.值越小,保溫效果越好.現(xiàn)有4種型號的雙層玻璃窗戶,具體數(shù)據(jù)如下表:

型號

每層玻璃厚度

(單位:厘米)

玻璃間夾空氣層厚度

(單位:厘米)

A

B

C

D

則保溫效果最好的雙層玻璃的型號是________型.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為,點為棱的中點.下列結論:①線段上存在點,使得平面;②線段上存在點,使得平面;③平面把正方體分成兩部分,較小部分的體積為,其中所有正確的序號是(

A.B.C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,,求的值域;

2)當時,求的最小值;

3)是否存在實數(shù),同時滿足下列條件:① ;② 的定義域為時,其值域為.若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案