函數(shù)f(x)的圖象如圖所示,若函數(shù)y=2f(x-1)-c與x軸有四個不同交點,則c的取值范圍是( 。
A、(-1,2.5)
B、(-1,5)
C、(-2,2.5)
D、(-2,5)
考點:函數(shù)的圖象與圖象變化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=2f(x-1)-c與x軸有四個不同交點,即方程2f(x-1)-c=0有四個不同的解,因此y=f(x-1)與y=
1
2
c有兩個不同的交點,由圖象即可得出.
解答: 解:函數(shù)y=2f(x-1)-c與x軸有四個不同交點,
即方程2f(x-1)-c=0有四個個不同的解,
由y=f(x-1)與y=
1
2
c有四個個不同的交點,
而函數(shù)f(x-1)是圖象向右平移一個單位,不改變與x軸的交點的情況,
故y=f(x)與y=
1
2
c有四個個不同的交點,
由圖象可知
1
2
c∈(-1,2.5).
故c∈(-2,5).
故選:D.
點評:本題考查了函數(shù)的零點轉(zhuǎn)化為函數(shù)圖象交點的個數(shù)問題、數(shù)形結(jié)合思想方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求值:tan300°+sin420°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
sin(
x
2
-
π
4
)的一個單調(diào)增區(qū)間為(  )
A、(
4
,
4
B、(-
π
4
,
4
C、(-
π
2
2
D、(
2
,
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A∉α,過A作與α平行的直線可作( 。
A、不存在B、一條
C、四條D、無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos37.5°sin97.5°-cos52.5°sin187.5°的值為( 。
A、
2
2
B、-
2
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-ax+(a-1)lnx(a>1),若對于任意x1,x2∈(0,+∞),x1≠x2,有
f(x 1)-f(x 2)
x1-x 2
>-1,則實數(shù)a的取值范圍為(  )
A、(1,4)
B、(1,4]
C、(1,5)
D、(1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,則與式子
b2+c2-a2
2bc
相等的是( 。
A、cosCB、cosB
C、cosAD、sinA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)對任意的x滿足f(x+1)=-f(x),當(dāng)-1≤x<1時,f(x)=x3.函數(shù)g(x)=
|logax|,x>0
-
1
x
,x<0
若函數(shù)h(x)=f(x)-g(x)在[-6,+∞)上有6個零點,則實數(shù)a的取值范圍是( 。
A、(0,
1
7
)∪(7,+∞)
B、[
1
9
1
7
)∪(7,9]
C、[
1
9
,1)∪(1,9]
D、(
1
9
,
1
7
]∪[7,9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
3
3-
3

查看答案和解析>>

同步練習(xí)冊答案