分析 (Ⅰ)連結(jié)BD1,則EF∥D1B,由此能證明EF∥平面ABC1D1.
(Ⅱ)由B1C⊥AB,B1C⊥BC1,知B1C⊥平面ABC1D1,由此能證明EF⊥B1C.
(Ⅲ)三棱錐A1-ABD1的體積${V_{{A_1}-AB{D_1}}}={V_{{D_1}-{A_1}AB}}$,由此能求出結(jié)果.
解答 (本小題滿分12分)
證明:(Ⅰ)連結(jié)BD1,
在△DD1B中,E、F分別為D1D,DB的中點(diǎn),則EF∥D1B,
又∵D1B?平面ABC1D1,EF?平面ABC1D1,
∴EF∥平面ABC1D1.(3分)
(Ⅱ)∵B1C⊥AB,B1C⊥BC1,
AB?平面ABC1D1,BC1?平面ABC1D1,
AB∩BC1=B,
∴B1C⊥平面ABC1D1.
又∵BD1?平面ABC1D1,∴B1C⊥BD1,
而EF∥BD1,∴EF⊥B1C.(8分)
解:(Ⅲ)三棱錐A1-ABD1的體積:
${V_{{A_1}-AB{D_1}}}={V_{{D_1}-{A_1}AB}}$=$\frac{1}{3}×{S}_{△{A}_{1}AB}×{A}_{1}{D}_{1}$
=$\frac{1}{3}×\frac{1}{2}×A{A}_{1}×AB×{A}_{1}{D}_{1}$
=$\frac{1}{3}×\frac{1}{2}×2×2×2=\frac{4}{3}$.(12分)
點(diǎn)評(píng) 本題考查線面平行的證明,考查線線垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x+y-2=0 | B. | y=7x+2 | C. | y=x-4 | D. | y=7x+4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,+∞) | B. | (3,+∞) | C. | [0,+∞) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 橢圓 | B. | 線段 | C. | 直線 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,2] | B. | [1,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,2] | D. | [$\frac{3}{2}$,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com