【題目】設橢圓的左右焦點為,上的動點,則下列結(jié)論正確的是(

A.B.離心率

C.面積的最大值為D.以線段為直徑的圓與直線相切

【答案】AD

【解析】

根據(jù)橢圓的定義判斷A選項正確性,根據(jù)橢圓離心率判斷B選項正確性,求得面積的最大值來判斷C選項的正確性,求得圓心到直線的距離,與半徑比較,由此判斷D選項的正確性.

對于A選項,由橢圓的定義可知,所以A選項正確.

對于B選項,依題意,所以,所以B選項不正確.

對于C選項,,當為橢圓短軸頂點時,的面積取得最大值為,所以C選項錯誤.

對于D選項,線段為直徑的圓圓心為,半徑為,圓心到直線的距離為,也即圓心到直線的距離等于半徑,所以以線段為直徑的圓與直線相切,所以D選項正確.

綜上所述,正確的為AD.

故選:AD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過的直線與橢圓相交于、兩點.

(1)求 的周長;

(2)設點為橢圓的上頂點,點在第一象限,點在線段上.若,求點的橫坐標;

(3)設直線不平行于坐標軸,點為點關于軸的對稱點,直線軸交于點.求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點是線段上的動點,則下列說法錯誤的是( )

A. 當點移動至中點時,直線與平面所成角最大且為

B. 無論點上怎么移動,都有

C. 當點移動至中點時,才有相交于一點,記為點,且

D. 無論點上怎么移動,異面直線所成角都不可能是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當a=0時,求函數(shù)f(x)在(1,f(1))處的切線方程;

(2)令求函數(shù)的極值.

(3)若,正實數(shù)滿足,

證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的兩個焦點為,并且經(jīng)過點.

1)求雙曲線的方程;

2)過點的直線與雙曲線有且僅有一個公共點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,,的面積為

1)求橢圓的方程;

2)過右焦點作與軸不重合的直線交橢圓,兩點,連接分別交直線于,兩點,若直線,的斜率分別為,試問:是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)R.

(1)討論的單調(diào)性;

(2)若有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,動點到點的距離和它到直線的距離相等,記點的軌跡為.

1)求的方程;

2)設點在曲線上,軸上一點(在點右側(cè))滿足,若平行于的直線與曲線相切于點,試判斷直線是否過點?并說明理由.

查看答案和解析>>

同步練習冊答案