【題目】已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是(
A.x∈R,f(x)≤f(x0
B.x∈R,f(x)≥f(x0
C.x∈R,f(x)≤f(x0
D.x∈R,f(x)≥f(x0

【答案】C
【解析】解:∵x0滿足關(guān)于x的方程2ax+b=0,∴

∵a>0,∴函數(shù)f(x)在x=x0處取到最小值是

等價于x∈R,f(x)≥f(x0),所以命題C錯誤.

答案:C.

【考點精析】利用四種命題的真假關(guān)系對題目進行判斷即可得到答案,需要熟知一個命題的真假與其他三個命題的真假有如下三條關(guān)系:(原命題 逆否命題)①、原命題為真,它的逆命題不一定為真;②、原命題為真,它的否命題不一定為真;③、原命題為真,它的逆否命題一定為真.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx= a>0a≠1.

(Ⅰ)求函數(shù)fx)的定義域;

(Ⅱ)判斷函數(shù)fx)的奇偶性,并加以證明;

(Ⅲ)設(shè)a=,解不等式fx>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)求證:平面AED⊥平面A1FD1;
(2)在AE上求一點M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中函數(shù)g(x)的圖象在點(1,g(1))處的切線平行于x軸.
(1)確定a與b的關(guān)系;
(2)若a≥0,試討論函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

)若函數(shù)上單調(diào)遞減,求實數(shù)的取值范圍.

)是否存在常數(shù),當(dāng)時, 在值域為區(qū)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)將直線l: (t為參數(shù))化為極坐標(biāo)方程;
(2)設(shè)P是(1)中直線l上的動點,定點A( , ),B是曲線ρ=﹣2sinθ上的動點,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求證:SA⊥BD;
(2)若∠BCD=120°,M為棱SA的中點,求證:DM∥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓M恒過點(0,1),且與直線y=﹣1相切.
(1)求圓心M的軌跡方程;
(2)動直線l過點P(0,﹣2),且與點M的軌跡交于A、B兩點,點C與點B關(guān)于y軸對稱,求證:直線AC恒過定點.

查看答案和解析>>

同步練習(xí)冊答案