已知F1、F2是橢圓C的左、右焦點,點P在橢圓上,且滿足PF1=2PF2,∠PF1F2=30°,則橢圓的離心率為________.
在△PF1F2中,由正弦定理得sin∠PF2F1=1,即∠PF2F1,設(shè)PF2=1,則PF1=2,F(xiàn)2F1,所以離心率e=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩個焦點是)和,并且經(jīng)過點,拋物線的頂點E在坐標原點,焦點恰好是橢圓C的右頂點F
(1)求橢圓C和拋物線E的標準方程;
(2)過點F作兩條斜率都存在且互相垂直的直線l1、l2l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.
(1)求橢圓的方程;
(2)設(shè)P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP與橢圓相交于兩點B、N,求證:∠NAP為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當點P在第一象限,且時,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,過且與橢圓長軸垂直的直線交橢圓于A、B兩點,若是正三角形,則這個橢圓的離心率是(     )
A.    B.    C.     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點O和點F分別為橢圓=1的中心和左焦點,點P為橢圓上的任意一點,則·的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓=1(a>b>0)的右焦點F,其右準線與x軸的交點為A,在橢圓上存在點P滿足線段AP的垂直平分線過點F,則橢圓離心率的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓+=1的兩個焦點是F1、F2,點P在該橢圓上,若|PF1|-|PF2|=2,則△PF1F2的面積是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC的頂點B、C在橢圓+y2=1上,頂點A與橢圓的焦點F1重合,且橢圓的另外一個焦點F2在BC邊上,則△ABC的周長是________.

查看答案和解析>>

同步練習(xí)冊答案