定義在(-1,1)上的函數(shù)f(x)是減函數(shù),且滿足f(1-a)<f(a),求實數(shù)a取值范圍.
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)是定義在(-1,1)上的減函數(shù),
∴由f(1-a)<f(a),得
-1<1-a<1
-1<a<1
1-a>a

0<a<2
-1<a<1
a<
1
2
,
解得0<a<
1
2
,
即實數(shù)a取值范圍是0<a<
1
2
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的應用,注意函數(shù)定義域的限制.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
(a∈R)為奇函數(shù).
(1)求函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)滿足f(k-2)+f(2x+1+4x)>0對于任意x∈R恒成立,求實數(shù)K的取值范圍;
(3)證明xf(x)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M與x軸的距離和點M與點F(0,4)的距離相等,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<x<
π
4
,sin(
π
4
-x)=
5
13
,
(1)求cos(
π
4
-x)的值.
(2)求
cos2x
cos(
π
4
+x)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)a∈R,f(x)=
a•2x+a-2
2x+1
(x∈R)是奇函數(shù),
(1)求a的值;
(2)解不等式f(1-5x)+f(6x2)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x+
1
x
的增減性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sinx+4cosx,則函數(shù)f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
4x2+2x+2
2x+1
(x>-
1
2
)
的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某質(zhì)量監(jiān)測中心在一屆學生中隨機抽取39人,對本屆學生成績進行抽樣分析.統(tǒng)計分析的一部分結(jié)果,見下表:
統(tǒng)計組人數(shù)平均分標準差
A組20906
B組19804
根據(jù)上述表中的數(shù)據(jù),可得本屆學生方差的估計值為
 
(結(jié)果精確到0.01).

查看答案和解析>>

同步練習冊答案