A. | $min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≤min\{|\overrightarrow a|,|\overrightarrow b|\}$ | B. | $min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≥{\overrightarrow a^2}+{\overrightarrow b^2}$ | ||
C. | $min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≥min\{|\overrightarrow a|,|\overrightarrow b|\}$ | D. | $min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≤{\overrightarrow a^2}+{\overrightarrow b^2}$ |
分析 根據(jù)向量加法與減法的幾何意義以及模長公式,結合題目中的最小值,對選項中的問題進行分析判斷,對錯誤選項進行排除即可.
解答 解:對于A,當$\overrightarrow{a}$⊥$\overrightarrow$時,根據(jù)向量加法與減法的幾何意義知,
|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|>min{|$\overrightarrow{a}$|,|$\overrightarrow$|}成立,故原不等式不成立;
對于B,${|\overrightarrow{a}±\overrightarrow|}^{2}$=${\overrightarrow{a}}^{2}$±2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$,∴${|\overrightarrow{a}±\overrightarrow|}^{2}$-(${\overrightarrow{a}}^{2}$+${\overrightarrow}^{2}$)=±2$\overrightarrow{a}$•$\overrightarrow$,
根據(jù)平面向量數(shù)量積的定義知,±2$\overrightarrow{a}$•$\overrightarrow$≥0不成立,故原不等式不成立;
對于C,當$\overrightarrow{a}$與$\overrightarrow$共線時,根據(jù)向量加法與減法的幾何意義知,
min{|$\overrightarrow{a}$+$\overrightarrow$|,|$\overrightarrow{a}$-$\overrightarrow$|}<min{|$\overrightarrow{a}$|,|$\overrightarrow$|}成立,故原不等式不成立;
對于D,${|\overrightarrow{a}±\overrightarrow|}^{2}$=${\overrightarrow{a}}^{2}$±2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$,∴${|\overrightarrow{a}±\overrightarrow|}^{2}$-(${\overrightarrow{a}}^{2}$+${\overrightarrow}^{2}$)=±2$\overrightarrow{a}$•$\overrightarrow$,
根據(jù)平面向量數(shù)量積的定義知,min{${|\overrightarrow{a}+\overrightarrow|}^{2}$,${|\overrightarrow{a}-\overrightarrow|}^{2}$}≤${\overrightarrow{a}}^{2}$+${\overrightarrow}^{2}$成立.
故選:D.
點評 本題考查了向量加法與減法的幾何意義的應用問題,解題時應用排除法,對錯誤選項進行舉反例說明即可.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m∥α,n∥α,則 m∥n | B. | 若m⊥α,α⊥β,則 m∥β | ||
C. | 若m∥α,α⊥β,則 m⊥β | D. | 若m⊥α,m∥β,則 α⊥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 恒大于0 | B. | 恒小于0 | C. | 等于0 | D. | 無法判斷 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com