【題目】已知在直三棱柱中,,,,,點(diǎn)在線段上.

(Ⅰ)證明:;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

【答案】(I)證明見解析;(II).

【解析】

試題分析:(1)根據(jù)邊角關(guān)系得到,進(jìn)而得到,,∴,又因?yàn)槭侵比庵,?/span>,進(jìn)而得到線線垂直;(2)建立坐標(biāo)系,求平面的法向量,平面的法向量,根據(jù)向量夾角的求法得到余弦值.

解析:

(Ⅰ)不妨設(shè),則,,,.

中,,,

,∴

,∴,即;

,,∴,

為直三棱柱,∴平面,∴

平面,∵點(diǎn)在線段上,∴.

(Ⅱ)由(Ⅰ)知,平面,建立如圖所示的空間直角坐標(biāo)系,

不妨設(shè),則,,,,∴,,.

設(shè)平面的法向量,則

,取,則,

則平面的一個(gè)法向量;

設(shè)平面的法向量,則,即,

,則,,則平面的一個(gè)法向量;

故平面與平面所成銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)中僅有一人申請了北京大學(xué)的自主招生考試,當(dāng)他們被問到誰申請了北京大學(xué)的自主招生考試時(shí),甲說:“丙或丁申請了”;乙說:“丙申請了”;丙說:“甲和丁都沒有申請”;丁說:“乙申請了”,如果這四位同學(xué)中只有兩人說的是對的,那么申請了北京大學(xué)的自主招生考試的同學(xué)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中;

(Ⅰ)若函數(shù)處取得極值,求實(shí)數(shù)的值,

(Ⅱ)在(Ⅰ)的結(jié)論下,若關(guān)于的不等式,當(dāng)時(shí)恒成立,求的值.

(Ⅲ)令,若關(guān)于的方程內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶居民月用水量不超過12噸,價(jià)格為4元/噸;第二階梯,每戶居民月用水量超過12噸,超過部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的直角頂點(diǎn)軸上,點(diǎn),為斜邊的中點(diǎn),且平行于軸.

(1)求點(diǎn)的軌跡方程;

(2)設(shè)點(diǎn)的軌跡為曲線,直線的另一個(gè)交點(diǎn)為.以為直徑的圓交軸于、,記此圓的圓心為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過點(diǎn).過點(diǎn)做兩條相互垂直的直線、分別與橢圓交于、、四點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若, ,探究:直線是否過定點(diǎn)?若是,請求出定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根.

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);

(2)若f(x)有兩個(gè)極值點(diǎn)x1、x2,證明:f(x1)+f(x2)>3-4ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓,拋物線的頂點(diǎn)為,準(zhǔn)線的方程為為拋物線上的動(dòng)點(diǎn),過點(diǎn)作圓的兩條切線與軸交于.

(Ⅰ)求拋物線的方程;

(Ⅱ)若,求△面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案