【題目】已知關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)根、.
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)求證:.
【答案】(I);(II)證明見(jiàn)解析.
【解析】
試題分析:(1)方程有兩個(gè)不同的實(shí)數(shù)根、,等價(jià)于有兩個(gè)不等根,對(duì)函數(shù)求導(dǎo),使得函數(shù)的圖象與有兩個(gè)不同的交點(diǎn)即可;(2) 證,只需證,需證,構(gòu)造函數(shù)證明大于0.
解析:
(Ⅰ)∵,∴.令,
則 ,
令,解得,令,解得,
則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
∴;
又當(dāng)時(shí),,當(dāng)時(shí),,
畫(huà)出函數(shù)的圖象.
要使函數(shù)的圖象與有兩個(gè)不同的交點(diǎn),
則,即實(shí)數(shù)的取值范圍為.
(Ⅱ)由(Ⅰ)知,,不妨設(shè),則,.
要證,只需證.
∵,且函數(shù)在上單調(diào)遞減,
∴只需證,又,∴只需證,
即證,即證對(duì)恒成立.
令,,則,
∵,∴,∴恒成立,
則函數(shù)在上單調(diào)遞減,∴.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知橢圓.過(guò)點(diǎn)(m,0)作圓的切線l交橢圓G于A,B兩點(diǎn).
(I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(II)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資量的算術(shù)平方根成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資量成正比例,其關(guān)系如圖2(注:利潤(rùn)與投資量的單位:萬(wàn)元).
(1)分別將A、B兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品中,問(wèn):怎樣分配這10萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程;
(2)求直線BC的方程;
(3)求△BDE的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為奇函數(shù), 為偶函數(shù),且.
(1)求及的解析式及定義域;
(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
(3)如果函數(shù),若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度)以[160,180)[180,200)[200,220)[220,240)[240,260)[260,280)[280,300)分組的頻率分布直方圖如圖所示:
(1)求直方圖中的值;
(2)用分層抽樣的方法從[260,280)和[280,300)這兩組用戶中確定6人做隨訪,再?gòu)倪@6人中隨機(jī)抽取2人做問(wèn)卷調(diào)查,則這2人來(lái)自不同組的概率是多少?
(3)求月平均用電量的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)設(shè)分別交于點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程1表示焦點(diǎn)在x軸上的雙曲線.
(1)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com