【題目】下面給出的命題中:

(1)“雙曲線的方程為”是“雙曲線的漸近線為”的充分不必要條件;

(2)“”是“直線與直線互相垂直”的必要不充分條件;

(3)已知隨機(jī)變量服從正態(tài)分布,且,則;

(4)已知圓,圓,則這兩個(gè)圓有3條公切線.

其中真命題的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】

(1)利用雙曲線的方程進(jìn)行判斷;(2)由兩直線垂直與系數(shù)的關(guān)系求出m值判斷;(3)求出P(ξ>2)=0.1判斷;(4)根據(jù)兩圓相交判斷.

(1)“雙曲線的方程為,則有雙曲線的漸近線為;反之雙曲線的漸近線為,則雙曲線的方程為,故命題不正確;

(2)直線(m+2)x+my+1=0與直線(m﹣2)x+(m+2)y﹣3=0互相垂直(m+2)(m﹣2)+m(m+2)=0,即m=﹣2m=1.∴“m=﹣2”直線(m+2)x+my+1=0與直線(m﹣2)x+(m+2)y﹣3=0互相垂直的充分不必要條件,故(2)錯(cuò)誤;

(3)隨機(jī)變量ξ服從正態(tài)分布N(0,δ2),且P(﹣2≤ξ≤0)=0.4,則P(ξ>2)=0.1,故(3)錯(cuò)誤;

(4)圓C1:x2+y2+2x=0化為(x+1)2+y2=1,圓C2:x2+y2﹣1=0化為x2+y2=1,兩圓的圓心距d=1,小于兩半徑之和,兩圓相交,這兩個(gè)圓恰有兩條公切線,故(4)錯(cuò)誤

正確的命題是1個(gè).

故答案為:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+2 sinωxcosωx﹣1,且f(x)的周期為2.
(Ⅰ)當(dāng) 時(shí),求f(x)的最值;
(Ⅱ)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的函數(shù)f(x)對任意x∈R都有f(x)=f(4﹣x),且其導(dǎo)函數(shù)f′(x)滿足(x﹣2)f′(x)>0,則當(dāng)2<a<4時(shí),有(
A.f(2a)<f(2)<f(log2a)
B.f(2)<f(2a)<f(log2a)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方向向量為v=(1, )的直線l過點(diǎn)(0,﹣2 )和橢圓C: =1(a>b>0)的焦點(diǎn),且橢圓C的中心關(guān)于直線l的對稱點(diǎn)在橢圓C的右準(zhǔn)線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點(diǎn)E(﹣2,0)的直線m交橢圓C于點(diǎn)M、N,滿足 = .cot∠MON≠0(O為原點(diǎn)).若存在,求直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n個(gè)非空子集(n≥2),定義aij= ,其中i,j=1,2,…,n,這樣得到的n2個(gè)數(shù)之和記為S(A1 , A2 , A3 , …,An),簡記為S,下列三種說法:①S與n的奇偶性相同;②S是n的倍數(shù);③S的最小值為n,最大值為n2 . 其中正確的判斷是(
A.①②
B.①③
C.②③
D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為下崗人員免費(fèi)提供財(cái)會(huì)和計(jì)算機(jī)培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項(xiàng)培訓(xùn)、參加兩項(xiàng)培訓(xùn)或不參加培訓(xùn).已知參加過財(cái)會(huì)培訓(xùn)的有60%,參加過計(jì)算機(jī)培訓(xùn)的有75%,假設(shè)每個(gè)人對培訓(xùn)項(xiàng)目的選擇是相互獨(dú)立的,且各人的選擇相互之間沒有影響.

1)任選1名下崗人員,求該人參加過培訓(xùn)的概率;

2)任選3名下崗人員,記ξ3人中參加過培訓(xùn)的人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)給出定義:

設(shè)是函數(shù)的導(dǎo)數(shù),是函數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”,

某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”:任意一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心,給定函數(shù),請根據(jù)上面探究結(jié)果:計(jì)算____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1, 曲線C2,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. 并在兩種坐標(biāo)系中取相同的單位長度。

(1)寫出曲線C1,C2的極坐標(biāo)方程;

(2)在極坐標(biāo)系中,已知點(diǎn)A是射線l:與C1的交點(diǎn),點(diǎn)B是l與C2的異于極點(diǎn)的交點(diǎn),當(dāng)在區(qū)間上變化時(shí),求的最大值.

查看答案和解析>>

同步練習(xí)冊答案