設(shè)數(shù)列{an}的通項(xiàng)公式為an=pn+q(n∈N*,P>0).?dāng)?shù)列{bn}定義如下:對(duì)于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3
(Ⅱ)若p=2,q=-1,求數(shù)列{bm}的前2m項(xiàng)和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)由題意,得an=
1
2
n-
1
3

1
2
n-
1
3
≥3
,得n≥
20
3

1
2
n-
1
3
≥3
成立的所有n中的最小正整數(shù)為7,即b3=7.

(Ⅱ)由題意,得an=2n-1,
對(duì)于正整數(shù)m,由an≥m,得n≥
m+1
2

根據(jù)bm的定義可知
當(dāng)m=2k-1時(shí),bm=k(k∈N*);
當(dāng)m=2k時(shí),bm=k+1(k∈N*).
∴b1+b2+…+b2m=(b1+b3+…+b2m-1)+(b2+b4+…+b2m)=(1+2+3+…+m)+[2+3+4+…+(m+1)]=
m(m+1)
2
+
m(m+3)
2
=m2+2m


(Ⅲ)假設(shè)存在p和q滿足條件,由不等式pn+q≥m及p>0得n≥
m-q
p

∵bm=3m+2(m∈N*),根據(jù)bm的定義可知,對(duì)于任意的正整數(shù)m都有3m+1<
m-q
p
≤3m+2

即-2p-q≤(3p-1)m<-p-q對(duì)任意的正整數(shù)m都成立.
當(dāng)3p-1>0(或3p-1<0)時(shí),得m<-
p+q
3p-1
(或m≤-
2p+q
3p-1
),這與上述結(jié)論矛盾!
當(dāng)3p-1=0,即p=
1
3
時(shí),得-
2
3
-q≤0<-
1
3
-q

解得-
2
3
≤q<-
1
3
.(經(jīng)檢驗(yàn)符合題意)
∴存在p和q,使得bm=3m+2(m∈N*);p和q的取值范圍分別是p=
1
3
,-
2
3
≤q<-
1
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列中,,),是數(shù)列的前n項(xiàng)和.
(1)求;
(2)設(shè)數(shù)列滿足),求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列{an}中,an=2n-106,則使前n項(xiàng)和Sn取得最小值的n的值為( 。
A.52B.53C.54D.52或53

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=2,a4=16
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}是等差數(shù)列,且b3=a3,b5=a5,求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

按如圖所示的程序框圖操作:
(Ⅰ)寫(xiě)出輸出的數(shù)所組成的數(shù)集.若將輸出的數(shù)按照輸出的順序從前往后依次排列,則得到數(shù)列{an},請(qǐng)寫(xiě)出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)如何變更A框內(nèi)的賦值語(yǔ)句,使得根據(jù)這個(gè)程序框圖所輸出的數(shù)恰好是數(shù)列{2n}的前7項(xiàng)?
(Ⅲ)如何變更B框內(nèi)的賦值語(yǔ)句,使得根據(jù)這個(gè)程序框圖所輸出的數(shù)恰好是數(shù)列{3n-2}的前7項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}是遞減數(shù)列,且a2•a3•a4=48,a2+a3+a4=12,則數(shù)列{an}的通項(xiàng)公式是( 。
A.a(chǎn)n=-2n+10B.a(chǎn)n=2n-12C.a(chǎn)n=2n+4D.a(chǎn)n=-2n+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an}中,a1=2,a3=2,則前8項(xiàng)的和S8=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{an}中,a1=2,S10=15,記Bn=a2+a4+a8+…+a2n,則當(dāng)n=______時(shí),Bn取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列的前n項(xiàng)和Sn=k•3n+1,則k的值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案