設(shè)函數(shù)f(x)=sinx-cosx+x+1,0<x<2π,
(1)寫出函數(shù)f(x)的遞減區(qū)間;
(2)討論函數(shù)f(x)的極大值或極小值,如有試寫出極值.
考點(diǎn):兩角和與差的正弦函數(shù),正弦函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用,三角函數(shù)的圖像與性質(zhì)
分析:(1)對(duì)函數(shù)f(x)=sinx-cosx+x+1求導(dǎo),對(duì)導(dǎo)函數(shù)用輔助角公式變形,利用導(dǎo)數(shù)等于0得極值點(diǎn),通過列表求出函數(shù)單調(diào)遞減區(qū)間;
(2)由(1)中的表格和極值點(diǎn)的兩側(cè)導(dǎo)數(shù)的正負(fù),求函數(shù)極大值和極小值.
解答: 解:(1)由題意得,f′(x)=cosx+sinx+1=
2
sin(x+
π
4
)+1

令f′(x)=0,得sin(x+
π
4
)=-
2
2
,
由0<x<2π得,x=π,或x=
2
,
當(dāng)x變化時(shí),f′(x),f(x)變化情況如下表:
 x    (0,π) π (π,
2
2
 
2
,π) 
 f′(x)+    0-    0+
 f(x)單調(diào)遞增 π+2單調(diào)遞減
2
 
 
單調(diào)遞增
由上表知f(x)的單調(diào)遞減區(qū)間是(π,
2
);
(2)由(1)中的表格知,函數(shù)f(x)的極小值為f(
2
)=
2
,
極大值為f(π)=π+2.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,利用導(dǎo)數(shù)為0得可能的極值點(diǎn),通過列表得每個(gè)區(qū)間導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,進(jìn)而得出極值點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足z=
-2+6i
1-i
-4.
(1)求復(fù)數(shù)z的共軛復(fù)數(shù)
.
z
;
(2)若w=z+ai,且|w|≤|z|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+bx2+cx+
1
6
的圖象在點(diǎn)M(1,f(1))處的切線方程為2x+y=0.
(1)求函數(shù)y=f(x)的解析式;
(2)若關(guān)于x的方程f(x)=m在區(qū)間[0,3]上恰有兩個(gè)相異實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,喜歡玩腦游戲的同學(xué)認(rèn)為作業(yè)多的有15人,認(rèn)為作業(yè)不多的有5人,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有10人,認(rèn)為作業(yè)不多的有20人,
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)在犯錯(cuò)誤的概率不超過多少的前提下認(rèn)為玩電腦游戲與作業(yè)量的多少有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt△FHE,H是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),EF分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長(zhǎng)度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=
2
,求此時(shí)管道的長(zhǎng)度L;
(3)已知:sinθ+cosθ=
2
sin(θ+
π
4
)(公式)
問:當(dāng)θ取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度.
(參考值:sin
π
12
=
6
-
2
4
;sin
12
=
6
+
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+
a
x
+b,當(dāng)x=1時(shí),f(x)取得極小值3.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)在[
1
2
,2]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

z=2m2-3m-2+(m2-3m+2)i(m∈R)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第三象限.
(1)求m的取值范圍;
(2)求f(m)=m2-3m+2的最小值,并求出此時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在區(qū)間[a,b]上的函數(shù)f(x),給出下列命題:
(1)若f(x)在多處取得極大值,那么f(x)的最大值一定是所有極大值中最大的一個(gè)值;
(2)若函數(shù)f(x)的極大值為m,極小值為n,那么m>n;
(3)若x0∈(a,b),在x0左側(cè)附近f′(x)<0,且f′(x0)=0,則x0是f(x)的極大值點(diǎn);
(4)若f′(x)在[a,b]上恒為正,則f(x)在[a,b]上為增函數(shù),
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上的點(diǎn),以F為圓心,
P
2
為半徑的圓與線段AF的交點(diǎn)為B,∠AFx=60°,A在y軸上的射影為N,則∠ONB=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案