【題目】已知,函數(shù).

(1)若有極小值且極小值為0,求的值;

(2)當時,,求的取值范圍.

【答案】(1)見解析;(2)

【解析】

(1)討論a的范圍,判斷f(x)的單調(diào)性,得出f(x)的極小值,從而列方程解出a的值;

(2)等價于,即,討論a的范圍,轉(zhuǎn)化為新函數(shù)的最值問題即可.

(1)

①若,則由解得

時,,遞減;當時,,遞增

故當時,取極小值,令,得(舍去)

,則由,解得

(i)若,即時,當,遞增;

,遞增;故當當時,取極小值,

,得(舍去)

(ii)若,即時,,遞增不存在極值;

(iii)若,即時,當時,,遞增;當時,,遞減;時,,遞增;

故當時,取極小值,得滿足條件

故當有極小值且極小值為0時,.

(2)等價于,即(*)

時,①式恒成立;當時,,故當時,①式恒成立;

以下求當時,不等式恒成立,且當時不等式恒成立時正數(shù)的取值范圍

,以下求當,恒成立,且當恒成立時正數(shù)的取值范圍

求導,得,記

(i)當時,,,

上遞增,又,故,

即當時,(*)式恒成立;

(ii)當時,,故的兩個零點即的兩個零點,在區(qū)間上,,是減函數(shù),

,所以,當時①式不能恒成立.

綜上所述,所求的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(12分)

如圖,四邊形ABCD為梯形,AB//CD,平面ABCD,

BC的中點.

(1)求證:平面平面PDE.

(2)在線段PC上是否存在一點F,使得PA//平面BDF?若存在,指出點F的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點。

1)證明: 平面;

2)設 ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)寫出函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍;

3)若對所有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游風景區(qū)發(fā)行的紀念章即將投放市場,根據(jù)市場調(diào)研情況,預計每枚該紀念章的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:

上市時間x

2

6

20

市場價y

102

78

120

1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述該紀念章的市場價y與上市時間x的變化關(guān)系并說明理由:①;②;③;

2)利用你選取的函數(shù),求該紀念章市場價最低時的上市天數(shù)及最低的價格;

3)利用你選取的函數(shù),若存在,使得不等式成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,水平的廣場上有一盞路燈掛在高的電線桿頂上,記電線桿的底部為點.把路燈看作一個點光源,身高的女孩站在離點的點處,回答下面的問題.

1)若女孩以為半徑繞著電線桿走一個圓圈,人影掃過的是什么圖形,求這個圖形的面積;

2)若女孩向點前行到達點,然后從點出發(fā)沿著以為對角線的正方形走一圈,畫出女孩走一圈時頭頂影子的軌跡,說明軌跡的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌手機廠商推出新款的旗艦機型,并在某地區(qū)跟蹤調(diào)查得到這款手機上市時間(個月)和市場占有率()的幾組相關(guān)對應數(shù)據(jù):

1

2

3

4

5

0.02

0.05

0.1

0.15

0.18

(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)根據(jù)上述回歸方程,分析該款旗艦機型市場占有率的變化趨勢,并預測自上市起經(jīng)過多少個月,該款旗艦機型市場占有率能超過(精確到月).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相。某超市計劃每年六月從精準扶貧戶中訂購荔枝,每天進貨量相同且每公斤20元,當日18時前售價為每公斤24元,18時后以每公斤16元的價格銷售完畢。根據(jù)往年情況,每天的荔枝需求量與當天平均氣溫有關(guān),如下表表示:

平均氣溫t(攝氏度)

需求量n(公斤)

50

100

200

300

為了確定今年6月1日6月30日的日購數(shù)量,統(tǒng)計了前三年六月各天的平均氣溫,得到如下的頻數(shù)分布表:

平均氣溫

天數(shù)

2

16

36

25

7

4

(1)假設該超市在以往三年內(nèi)的六月每天進貨100公斤,求荔枝為超市帶來的日平均利潤(結(jié)果取整數(shù)).

(2)若今年該超市進貨量為200公斤,以記錄的各需求量的頻率作為相應的概率,求當天超市不虧損的概率.

查看答案和解析>>

同步練習冊答案