【題目】已知函數(shù)
(1)寫出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍;
(3)若對所有恒成立,求實數(shù)的取值范圍.
【答案】(1)單調(diào)減區(qū)間為,,增區(qū)間為,(2),(3)
【解析】
(1)畫出函數(shù)的圖像即可求出函數(shù)的單調(diào)區(qū)間.
(2)轉(zhuǎn)化為函數(shù)的圖像與恰有個不同的交點,利用函數(shù)的圖像即可求出的取值范圍.
(3)將題意轉(zhuǎn)化為,再求出,轉(zhuǎn)化為在恒成立,從而建立關(guān)于的不等關(guān)系,解不等式組即可.
(1)函數(shù)的圖像如圖所示:
由圖知:函數(shù)的單調(diào)減區(qū)間為,,增區(qū)間為.
(2)函數(shù)恰有3個不同零點,
等價于:函數(shù)的圖像與恰有個不同的交點.
因為,
由圖知:,即.
(3)對所有恒成立,
等價于即可.
由函數(shù)的圖像知,,
所以等價于:在恒成立.
所以或或.
所以的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的5項預(yù)賽成績記錄如下:
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)從甲、乙兩人的成績中各隨機抽取一個,求甲的成績比乙高的概率;
(3)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線的參數(shù)方程為(是參數(shù)),圓的極坐標方程為.
(Ⅰ)求直線的普通方程與圓的直角坐標方程;
(Ⅱ)設(shè)曲線與直線的交于,兩點,若點的直角坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認為“月收入以5500元為分界點對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計 | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計 | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機抽取2人,恰有1位是贊成者的概率。
參考公式:,其中.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了反映國民經(jīng)濟各行業(yè)對倉儲物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.
根據(jù)該折線圖,下列結(jié)論正確的是
A. 2016年各月的倉儲指數(shù)最大值是在3月份
B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大
D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務(wù)活動仍然較為活躍,經(jīng)濟運行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是奇函數(shù)(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a的值;
(2)求函數(shù)在上的值域;
(3)令,求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集具有性質(zhì);對任意的、,,與兩數(shù)中至少有一個屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(2)證明:,且;
(3)當(dāng)時,若,求集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為,以原點為極點,以軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)寫出曲線的極坐標方程和直線的直角坐標方程;
(2)若射線與曲線交于兩點,與直線交于點,射線與曲線交于兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com