【題目】為了反映國民經濟各行業(yè)對倉儲物流業(yè)務的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.

根據(jù)該折線圖,下列結論正確的是

A. 2016年各月的倉儲指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大

D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務活動仍然較為活躍,經濟運行穩(wěn)中向好

【答案】D

【解析】2016年各月的倉儲指數(shù)最大值是在11月份;2017年1月至12月的倉儲指數(shù)的中位數(shù)為52%;2017年1月至4月的倉儲指數(shù)比2016年同期波動性。2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務活動仍然較為活躍,經濟運行穩(wěn)中向好,所以選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向左平移個單位長度后得到函數(shù)的圖象,則下列關于的說法正確的是(

A.最大值為1,圖象關于直線對稱

B.周期為,圖象關于點對稱

C.圖象關于y軸對稱,在上單調遞減

D.上單調遞增,且為偶函數(shù)

E.上單調遞減,且為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)若處取到極值,求的值;

(2)若上恒成立,求的取值范圍;

(3)求證:當時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了落實國務院“提速降費”的要求,某市移動公司欲下調移動用戶消費資費.已知該公司共有移動用戶10萬人,人均月消費50元.經測算,若人均月消費下降x%,則用戶人數(shù)會增加萬人.

(1)若要保證該公司月總收入不減少,試求x的取值范圍;

(2)為了布局“5G網(wǎng)絡”,該公司擬定投入資金進行5G網(wǎng)絡基站建設,投入資金方式為每位用戶月消費中固定劃出2元進入基站建設資金,若使該公司總盈利最大,試求x的值.

(總盈利資金=總收入資金-總投入資金)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知傾斜角為的直線經過拋物線的焦點,與拋物線相交于兩點,且.

(Ⅰ)求拋物線的方程;

(Ⅱ)過點的兩條直線分別交拋物線于點、,線段的中點分別為.如果直線的傾斜角互余,求證:直線經過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)寫出函數(shù)的單調區(qū)間;

2)若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍;

3)若對所有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面為菱形, ,側面為等腰直角三角形,,點為棱的中點.

(1)求證:面;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:經過點,離心率為.

(1)求橢圓的方程;

(2)過點的直線交橢圓于兩點,為橢圓的左焦點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)學院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1到6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見下表:

該院確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的兩個月的概率;

(Ⅱ)已知選取的是1月與6月的兩組數(shù)據(jù).

(1)請根據(jù)2到5月份的數(shù)據(jù),求出就診人數(shù)關于晝夜溫差的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該協(xié)會所得線性回歸方程是否理想?

(參考公式和數(shù)據(jù):

)

查看答案和解析>>

同步練習冊答案