【題目】已知函數(shù)).

(1)若處取到極值,求的值;

(2)若上恒成立,求的取值范圍;

(3)求證:當時, .

【答案】(1) ;(2) ;(3)證明見解析.

【解析】試題分析:(1)根據(jù)極值的概念得到,可得到參數(shù)值;(2)轉化為函數(shù)最值問題,研究函數(shù)的單調性,分,,,三種情況討論單調性,使得最小值大于等于0即可;(3)由(1)知令,當時,,時,,給x賦值:2,3,4,5等,最終證得結果.

試題解析:(1),

處取到極值,

,即,∴,

經檢驗,時,處取到極小值.

(2),令),

時,,上單調遞減,又

時,,不滿足上恒成立.

時,二次函數(shù)開口向上,對稱軸為,過.

,即時, 上恒成立,,從而上單調遞增,

,∴時,成立,滿足上恒成立;

,即時,存在,使時, ,單調遞減,時,單調遞增,

,又,∴,故不滿足題意.

時,二次函數(shù)開口向下,對稱軸為單調遞減, ,

上單調遞減,又,∴時,,故不滿足題意綜上所述, .

(3)證明:由(1)知令,當時, (當且僅當時取”),

.即當2,3,4,,有

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】命題p:x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的( 。

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)

在平面直角坐標系中,點到點的距離之和為4.

(1)試求點AM的方程.

(2)若斜率為的直線l與軌跡M交于C,D兩點,為軌跡M上不同于C,D的一點,記直線PC的斜率為,直線PD的斜率為,試問是否為定值.若是,求出該定值;若不同,請說出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)=Asin(A>0,>0,<)在處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為。

(1)求的解析式;

(2)求函數(shù) 的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一塊長方形區(qū)域,,,在邊的中點處有一個可轉動的探照燈,其照射角始終為,設,探照燈照射在長方形內部區(qū)域的面積為.

1)求關于的函數(shù)關系式;

2)當時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線的參數(shù)方程為是參數(shù)),圓的極坐標方程為.

(Ⅰ)求直線的普通方程與圓的直角坐標方程;

(Ⅱ)設曲線與直線的交于兩點,若點的直角坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且對任意正整數(shù),都有成立.記

求數(shù)列的通項公式;

(Ⅱ)設,數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了反映國民經濟各行業(yè)對倉儲物流業(yè)務的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.

根據(jù)該折線圖,下列結論正確的是

A. 2016年各月的倉儲指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大

D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務活動仍然較為活躍,經濟運行穩(wěn)中向好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)滿足,且當時,,對任意R,均有

(1)求證:;

(2)求證:對任意R,恒有;

(3)求證:是R上的增函數(shù);

(4)若,求的取值范圍.

查看答案和解析>>

同步練習冊答案