精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱中,,且,點M在棱上,點NBC的中點,且滿足.

1)證明:平面;

2)若M的中點,求二面角的正弦值.

【答案】(1)詳見解析;(2).

【解析】

1)推導出平面,從而,由,得,再由,能證明平面
2)以A為原點,分別以AB、AC、x軸、y軸、z軸建立空間直角坐標系,利用向量法能求出二面角的正弦值.

解:(1)∵三棱柱為直三棱柱,∴

,平面,平面,且,

平面,(或者由面面垂直的性質證明)

又∵平面,∴

,∴,

,平面平面,且,

平面

2)以A為原點,分別以ABAC、x軸、y軸、z軸建立空間直角坐標系

,則,,,,,,

,∴,∴

,

設平面法向量為

,

,∴可取

設平面法向量為

,

,∴可取

所以二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知是正三角形,EACD都垂直于平面ABC,且,二面角的平面角大小為,FBE的中點,求證:

1平面ABC;

2平面EDB

3)求幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的右頂點為A,以A為圓心,b為半徑做圓,圓A與雙曲線C的一條漸近線相交于MN兩點,若為坐標原點),則雙曲線C的離心率為___________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若恒成立,求實數的最大值;

(2)在(1)成立的條件下,正實數,滿足,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某網店經營的一種商品進行進價是每件10元,根據一周的銷售數據得出周銷售量(件)與單價(元)之間的關系如下圖所示,該網店與這種商品有關的周開支均為25元.

(1)根據周銷售量圖寫出(件)與單價(元)之間的函數關系式;

(2)寫出利潤(元)與單價(元)之間的函數關系式;當該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,底面是等腰梯形,,點的中點,以為邊作正方形,且平面平面.

1)證明:平面平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,().

1)若,求的極值和單調區(qū)間;

2)若在區(qū)間上至少存在一點,使得成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等差數列{an}的前n項和為Sn,若S9=81,a3+a5=14

1)求數列{an}的通項公式;

2)設bn=,若{bn}的前n項和為Tn,證明:Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數.

(Ⅰ)若,解不等式;

(Ⅱ)當時,函數的最小值為,求實數的值.

查看答案和解析>>

同步練習冊答案