【題目】定義域在R的單調(diào)增函數(shù)滿足恒等式(x,),且.
(1)求,;
(2)判斷函數(shù)的奇偶性,并證明;
(3)若對(duì)于任意,都有成立,求實(shí)數(shù)k的取值范圍.
【答案】(1),;(2)是奇函數(shù),證明見解析;(3).
【解析】
(1)運(yùn)用賦值法,代入求出的值,代入,結(jié)合已知條件求出的值.
(2)令代入已知的恒等式中,結(jié)合函數(shù)奇偶性的定義判斷出函數(shù)的奇偶性.
(3)由(2)知函數(shù)為奇函數(shù),運(yùn)用奇函數(shù)性質(zhì)進(jìn)行化簡,再結(jié)合函數(shù)的單調(diào)性求解不等式,解出實(shí)數(shù)k的取值范圍.
(1)令可得,
令,∴∴∴;
(2)令∴∴,即
∴函數(shù)是奇函數(shù).
(3)∵是奇函數(shù),且在時(shí)恒成立,
∴在時(shí)恒成立,
又∵是R上的增函數(shù).
∴即在時(shí)恒成立.
∴在時(shí)恒成立.
令,
∵∴.由拋物線圖象可得∴.
則實(shí)數(shù)k的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(,N(為不同的兩點(diǎn),直線l:,=,下列命題正確中正確命題的序號(hào)是_______
(1)若,則直線l與線段MN相交;
(2)若=-1,則直線l經(jīng)過線段MN的中點(diǎn);
(3)存在,使點(diǎn)M在直線l上;
(4)存在,使過M、N的直線與直線l重合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場對(duì)顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定 :一次購物總額
1)如果不超過500元,那么不予優(yōu)惠;
2)如果超過500元但不超過1000元,那么超過500元部分按標(biāo)價(jià)給予8折優(yōu)惠;
3)如果超過1000元,那么其中超過500不超過1000元給予8折優(yōu)惠,超過1000元部分給予5折優(yōu)惠.設(shè)一次購物標(biāo)價(jià)總額為x元,優(yōu)惠后實(shí)際付款額為f(x)元.
(1)試寫出f(x)的解析式;
(2)如果某顧客實(shí)際付款額為1600元,在這次優(yōu)惠活動(dòng)中他實(shí)際付款額比購物標(biāo)價(jià)總額少支出多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請(qǐng)名同學(xué),每人隨機(jī)寫下一個(gè)都小于1的正實(shí)數(shù)對(duì);再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)來估計(jì)的值.假如統(tǒng)計(jì)結(jié)果是,那么可以估計(jì)( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求滿足的的值;
(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足,若對(duì)任意且≠0,不等式恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對(duì)稱軸的距離為,將函數(shù)的圖象向左平移個(gè)單位后,得到的圖象關(guān)于y軸對(duì)稱則函數(shù)的圖象( )
A. 關(guān)于直線對(duì)稱 B. 關(guān)于直線對(duì)稱
C. 關(guān)于點(diǎn)對(duì)稱 D. 關(guān)于點(diǎn)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形PAD所在平面與菱形ABCD所在平面互相垂直,已知點(diǎn)E,F(xiàn),M,N分別為邊BA,BC,AD,AP的中點(diǎn).
(1)求證:AC⊥PE;
(2)求證:PF∥平面BNM.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com