【題目】在平面直角坐標(biāo)系中,曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1.

(1)求曲線的方程;

(2)若直線 與曲線交于兩點(diǎn),求證:直線與直線的傾斜角互補(bǔ).

【答案】(1);(2)見解析

【解析】

1)利用拋物線定義“到定點(diǎn)距離等2于到定直線距離的點(diǎn)的軌跡”求動(dòng)點(diǎn)的軌跡;

2)設(shè)直線與拋物線方程聯(lián)立化為,.由于,利用根與系數(shù)的關(guān)系與斜率計(jì)算公式可得:直線與直線的斜率之和0,即可證明

(1)曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1,

所以動(dòng)點(diǎn)到直線的距離與它到點(diǎn)的距離相等,

故所求軌跡為:以原點(diǎn)為頂點(diǎn),開口向右的拋物線;

(2)證明:設(shè).聯(lián)立,得,(

,,∴直線線與直線的斜率之和:

因?yàn)?/span>∴直線與直線的斜率之和為,

∴直線與直線的傾斜角互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓右焦點(diǎn)的直線與橢圓交于兩點(diǎn)、,在軸上是否存在點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能.近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:

某位同學(xué)分別用兩種模型:①進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于):

經(jīng)過計(jì)算得,

(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說明理由.

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立y關(guān)于x的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01)

附:歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線,過拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于、兩點(diǎn),且的周長(zhǎng)為.

(1)求拋物線的方程;

(2)若直線過焦點(diǎn)且與拋物線相交于、兩點(diǎn),過點(diǎn)分別作拋物線的切線、,切線相交于點(diǎn),求:的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.

(1)求橢圓的方程;

(2)不經(jīng)過點(diǎn)的直線)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線,軸分別交于兩點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=8x的焦點(diǎn),作傾斜角為45°的直線,則被拋物線截得的弦長(zhǎng)為(  )

A. 8 B. 16 C. 32 D. 64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知點(diǎn),過點(diǎn)作直線與圓和拋物線都相切.

1)求拋物線的兩切線的方程;

2)設(shè)拋物線的焦點(diǎn)為,過點(diǎn)的直線與拋物線相交于、兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)(其中點(diǎn)靠近點(diǎn)),且,求的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,為梯形,,,,,.

(1)在線段上有一個(gè)動(dòng)點(diǎn),滿足平面,求實(shí)數(shù)的值;

(2)已知的交點(diǎn)為,若,且平面,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,E為AB的中點(diǎn).將沿DE翻折,得到四棱錐.設(shè)的中點(diǎn)為M,在翻折過程中,有下列三個(gè)命題:

①總有平面;

②線段BM的長(zhǎng)為定值;

③存在某個(gè)位置,使DE與所成的角為90°.

其中正確的命題是_______.(寫出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案