【題目】在平面直角坐標(biāo)系中,已知拋物線,過(guò)拋物線焦點(diǎn)且與軸垂直的直線與拋物線相交于兩點(diǎn),且的周長(zhǎng)為.

(1)求拋物線的方程;

(2)若直線過(guò)焦點(diǎn)且與拋物線相交于、兩點(diǎn),過(guò)點(diǎn)、分別作拋物線的切線、,切線相交于點(diǎn),求:的值.

【答案】(1);(2)0.

【解析】

1)先求得A,B兩點(diǎn)坐標(biāo),利用計(jì)算的周長(zhǎng)可得p,進(jìn)而求得拋物線方程;

2)利用導(dǎo)數(shù)的幾何意義求得切線的方程,聯(lián)立直線與拋物線方程,利用韋達(dá)定理及的交點(diǎn)P,可得,再利用焦半徑公式求得,可得結(jié)果.

1)由題意知焦點(diǎn)的坐標(biāo)為,將代入拋物線的方程可求得點(diǎn)的坐標(biāo)分別為、

,,可得的周長(zhǎng)為,有,得.

故拋物線的方程為.

2)由(1)知拋物線的方程可化為,求導(dǎo)可得.

設(shè)點(diǎn)、的坐標(biāo)分別為、.

設(shè)直線的方程為(直線的斜率顯然存在).

聯(lián)立方程消去整理為:,可得.

,.

可得直線的方程為,整理為.

同理直線的方程為.

聯(lián)立方程,解得,則點(diǎn)的坐標(biāo)為.

由拋物線的幾何性質(zhì)知,

.

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)假期社會(huì)實(shí)踐活動(dòng)選定的課題是“節(jié)約用水研究”.為此他購(gòu)買了電子節(jié)水閥,并記錄了家庭未使用電子節(jié)水閥20天的日用水量數(shù)據(jù)(單位:)和使用了電子節(jié)水閥20天的日用水量數(shù)據(jù),并利用所學(xué)的《統(tǒng)計(jì)學(xué)》知識(shí)得到了未使用電子節(jié)水閥20天的日平均用水量為0.48,使用了電子節(jié)水閥20天的日用水量數(shù)據(jù)的頻率分布直方圖如下圖:

1)試估計(jì)該家庭使用電子節(jié)水閥后,日用水量小于0.35的概率;

2)估計(jì)該家庭使用電子節(jié)水閥后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在工業(yè)生產(chǎn)中,對(duì)一正三角形薄鋼板(厚度不計(jì))進(jìn)行裁剪可以得到一種梯形鋼板零件,現(xiàn)有一邊長(zhǎng)為3(單位:米)的正三角形鋼板(如圖),沿平行于邊的直線剪去,得到所需的梯形鋼材,記這個(gè)梯形鋼板的周長(zhǎng)為 (單位:米),面積為(單位:平方米).

(1)求梯形的面積關(guān)于它的周長(zhǎng)的函數(shù)關(guān)系式;

(2)若在生產(chǎn)中,梯形的面積與周長(zhǎng)之比(即)達(dá)到最大值時(shí),零件才能符合使用要求,試確定這個(gè)梯形的周長(zhǎng)為多時(shí),該零件才可以在生產(chǎn)中使用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】半期考試后,班長(zhǎng)小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績(jī),繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)平均成績(jī);

用分層抽樣的方法從成績(jī)低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績(jī)均在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘輪船在航行中燃料費(fèi)和它的速度的立方成正比.已知速度為每小時(shí)10千米時(shí),燃料費(fèi)是每小時(shí)6,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96,問(wèn)輪船的速度是多少時(shí),航行1千米所需的費(fèi)用總和最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點(diǎn),是棱上的點(diǎn),,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有男性職工64名,一次體檢后,將他們的體重(單位:kg)分組為:,,,,繪制出頻率分布直方圖如圖,圖中從左到右的前3個(gè)小組的頻率之比為.

1)求這64名男職工中,體重小于60kg的人數(shù);

2)從體重在kg范圍的男職工中用分層抽樣的方法選取6名,再?gòu)倪@6名男職工中隨機(jī)選取2名,記“至少有一名男職工體重大于65kg”為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)在圓柱的底面上,,,分別為,的直徑,且.若圓柱的體積,,回答下列問(wèn)題:

1)求三棱錐的體積.

2)在線段AP上是否存在一點(diǎn)M,使異面直線OM所成的角的余弦值為?若存在,請(qǐng)指出點(diǎn)M的位置,并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正△ABC,點(diǎn)D,E分別在邊AC, AB,AD=AC,AE=AB,BD,CE相交于點(diǎn)F.

)求證:A,E,F,D四點(diǎn)共圓;

)若正△ABC的邊長(zhǎng)為2,A,E,F,D所在圓的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案