A. | (1,+∞) | B. | (2,+∞) | C. | (-∞,-2) | D. | (-∞,-1) |
分析 由已知中曲線C的方程x2+y2+2ax-4ay+5a2-4=0,我們易求出圓的標(biāo)準(zhǔn)方程,進(jìn)而確定圓的圓心為(-a,2a),圓的半徑為2,然后根據(jù)曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),易構(gòu)造出關(guān)于a的不等式組,解不等式組,即可得到a的取值范圍.
解答 解:由已知圓的方程為x2+y2+2ax-4ay+5a2-4=0
則圓的標(biāo)準(zhǔn)方程為:(x+a)2+(y-2a)2=4
故圓的圓心為(-a,2a),圓的半徑為2
若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),
則a>0,且|-a|>2
解得a>2
故a的取值范圍為(2,+∞)
故選B.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是圓的方程的綜合應(yīng)用,其中根據(jù)曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),構(gòu)造出滿足條件的不等式組,是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{2}{3}π$ | B. | $\frac{π}{3}$ | C. | $\frac{2}{3}π$ | D. | $-\frac{2}{3}π$或$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6π | B. | 9π | C. | $\frac{9π}{2}$ | D. | $\frac{9}{4}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | $±\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$ | B. | 3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$和-6$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$ | ||
C. | $\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$和2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$ | D. | $\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com