【題目】已知函數(shù)
(1)在如圖所示給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)遞增區(qū)間;
(3)由圖象指出當(dāng)x取什么值時(shí)f(x)有最值.
【答案】(1)見解析;(2)單調(diào)遞增區(qū)間為[-1,0],[2,5].
(3)當(dāng)x=2時(shí),f(x)min=f(2)=-1,當(dāng)x=0時(shí),f(x)max=f(0)=3.
【解析】
(1)根據(jù)給出的函數(shù)的解析式畫出函數(shù)的圖象即可.(2)根據(jù)圖象寫出函數(shù)的單調(diào)遞增區(qū)間即可.(3)根據(jù)圖象求解可得所求的最值及對應(yīng)的x的值.
(1)畫出函數(shù)f(x)的圖象如下圖所示.
(2)由圖象可知,函數(shù)f(x)的單調(diào)遞增區(qū)間為[-1,0],[2,5].
(3)由圖象知,當(dāng)x=2時(shí),f(x)min=f(2)=-1;當(dāng)x=0時(shí),f(x)max=f(0)=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且為自然對數(shù)的底數(shù))
(1)判斷函數(shù)的單調(diào)性并證明;
(2)判斷函數(shù)的奇偶性并證明;
(3)是否存在實(shí)數(shù),使不等式對一切都成立?若存在,求出的范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:函數(shù)在區(qū)間上是減函數(shù);
(2)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,,分別是棱,的中點(diǎn),為棱上一點(diǎn),且平面.
(1)證明:為中點(diǎn);
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD-A1B1C1D1中,CD∥AB, AB⊥BC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點(diǎn)M是AB1的中點(diǎn)
(1)證明:CM∥平面ADD1A1;
(2)求點(diǎn)M到平面ADD1A1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時(shí)期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是.若某人滿足上述兩個(gè)黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,,分別為的右頂點(diǎn)和上頂點(diǎn),且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,分別是軸負(fù)半軸,軸負(fù)半軸上的點(diǎn),且四邊形的面積為2,設(shè)直線和的交點(diǎn)為,求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:mx﹣y=1,若直線l與直線x+m(m﹣1)y=2垂直,則m的值為_____,動(dòng)直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com