【題目】為調(diào)查人們在購物時的支付習慣,某超市對隨機抽取的600名顧客的支付方式進行了統(tǒng)計,數(shù)據(jù)如下表所示:
支付方式 | 微信 | 支付寶 | 購物卡 | 現(xiàn)金 |
人數(shù) | 200 | 150 | 150 | 100 |
現(xiàn)有甲、乙、丙三人將進入該超市購物,各人支付方式相互獨立,假設以頻率近似代替概率.
(1)求三人中使用微信支付的人數(shù)多于現(xiàn)金支付人數(shù)的概率;
(2)記為三人中使用支付寶支付的人數(shù),求的分布列及數(shù)學期望.
【答案】(1)(2)見解析
【解析】
(1)根據(jù)表格,得出顧客使用微信、支付寶、購物卡和現(xiàn)金支付的概率,之后應用互斥事件有一個發(fā)生的概率和獨立事件同時發(fā)生的概率公式求得結(jié)果;
(2)利用二項分布求得結(jié)果.
(1)由表格得顧客使用微信、支付寶、購物卡和現(xiàn)金支付的概率分別為,
設Y為三人中使用微信支付的人數(shù),Z為使用現(xiàn)金支付的人數(shù),
事件A為“三人中使用微信支付的人數(shù)多于現(xiàn)金支付人數(shù)”,
則P(A)=P(Y=3)+P(Y=2)+P(Y=1且Z=0)
=
=
(2)由題意可知,故所求分布列為
X | 0 | 1 | 2 | 3 |
P |
E(X)=
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),對任意a,恒有,且當時,有.
Ⅰ求;
Ⅱ求證:在R上為增函數(shù);
Ⅲ若關于x的不等式對于任意恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)滿足,當x∈[0,1]時,f(x)=x,若在區(qū)間(-1,1]上方程f(x)-mx-m=0有兩個不同的實根,則實數(shù)m的取值范圍是()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某IT從業(yè)者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點圖:
(1)由散點圖知,可用回歸模型擬合與的關系,試根據(jù)附注提供的有關數(shù)據(jù)建立關于的回歸方程
(2)若把月收入不低于2萬元稱為“高收入者”.
試利用(1)的結(jié)果,估計他36歲時能否稱為“高收入者”?能否有95%的把握認為年齡與收入有關系?
附注:①.參考數(shù)據(jù):,,,,,,,其中,取,
②.參考公式:回歸方程中斜率和截距的最小二乘估計分別為:,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于的不等式,下列結(jié)論正確的是( )
A.當時,不等式的解集為
B.當,時,不等式的解集為
C.當時,不等式的解集可以為的形式
D.不等式的解集恰好為,那么
E.不等式的解集恰好為,那么
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 在上,且面.
(1)求證: 是的中點;
(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)若關于x的不等式ax2﹣3x+2>0(a∈R)的解集為{x|x<1或x>b},求a,b的值;
(2)解關于x的不等式ax2﹣3x+2>5﹣ax(a∈R).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com