【題目】為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國各城市中抽取了100個(gè)相同等級(jí)地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(tái)(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.
訂單:(單位:萬件) |
| |||||||
頻數(shù) | 1 | 2 | 2 | 3 | ||||
訂單:(單位:萬件) | ||||||||
頻數(shù) | 40 | 20 | 20 | 10 | 2 | |||
(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).
業(yè)績突出城市 | 業(yè)績不突出城市 | 總計(jì) | |
外賣甲 | |||
外賣乙 | |||
總計(jì) |
(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:
①從全國各城市中隨機(jī)抽取6個(gè)城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個(gè)數(shù),求的數(shù)學(xué)期望;
②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動(dòng)來提升業(yè)績,據(jù)統(tǒng)計(jì),開展此活動(dòng)后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個(gè)城市不開展?fàn)I銷活動(dòng),若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個(gè)城市中開展?fàn)I銷活動(dòng)將比不開展?fàn)I銷活動(dòng)每月多盈利多少萬元?
附:①參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
②若,則,.
【答案】(1)見解析,有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).(2)①4.911②100萬元.
【解析】
(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個(gè)外賣平臺(tái)中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計(jì)算的觀測(cè)值,即可結(jié)合臨界值作出判斷.
(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結(jié)合正態(tài)分布曲線性質(zhì)可求得,再由二項(xiàng)分布的數(shù)學(xué)期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質(zhì)可確定各組抽取樣本數(shù).分別計(jì)算出開展?fàn)I銷活動(dòng)與不開展?fàn)I銷活動(dòng)的利潤,比較即可得解.
(1)對(duì)于外賣甲:月訂單不低于13萬件的城市數(shù)量為,
對(duì)于外賣乙:月訂單不低于13萬件的城市數(shù)量為.
由以上數(shù)據(jù)完善列聯(lián)表如下圖,
業(yè)績突出城市 | 業(yè)績不突出城市 | 總計(jì) | |
外賣甲 | 40 | 60 | 100 |
外賣乙 | 52 | 48 | 100 |
總計(jì) | 92 | 108 | 200 |
且的觀測(cè)值為,
∴有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).
(2)①樣本平均數(shù),
故
=
=,
,
的數(shù)學(xué)期望,
②由分層抽樣知,則100個(gè)城市中每月訂單數(shù)在區(qū)間內(nèi)的有(個(gè)),
每月訂單數(shù)在區(qū)間內(nèi)的有(個(gè)),
若不開展?fàn)I銷活動(dòng),則一個(gè)月的利潤為(萬元),
若開展?fàn)I銷活動(dòng),則一個(gè)月的利潤為(萬元),
這100個(gè)城市中開展?fàn)I銷活動(dòng)比不開展每月多盈利100萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“福”字、貼春聯(lián)、掛燈籠等方式來表達(dá)對(duì)新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動(dòng),顧客凡購物金額滿50元,則可以從“!弊、春聯(lián)和燈籠這三類禮品中任意免費(fèi)領(lǐng)取一件,若有4名顧客都領(lǐng)取一件禮品,則他們中有且僅有2人領(lǐng)取的禮品種類相同的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C:(),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線,使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角
(1)若問:觀察者離墻多遠(yuǎn)時(shí),視角最大?
(2)若當(dāng)變化時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)設(shè)函數(shù),討論的單調(diào)性;
(2)設(shè)函數(shù),若的圖象與的圖象有,兩個(gè)不同的交點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站2017年1-8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
(1)根據(jù)數(shù)據(jù)繪制的散點(diǎn)圖能夠看出可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;(系數(shù)精確到0.001)
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01);如果該公司計(jì)劃在9月份實(shí)現(xiàn)產(chǎn)品銷量超6萬件,預(yù)測(cè)至少需投入促銷費(fèi)用多少萬元(結(jié)果精確到0.01).
參考數(shù)據(jù): , , , , ,其中, 分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量, .
參考公式:(1)樣本的相關(guān)系數(shù)
(2)對(duì)于一組數(shù)據(jù), , , ,其回歸方程的斜率和截距的最小二乘估計(jì)分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國生活垃圾無害化處理量.
附注:
參考數(shù)據(jù):,,
,≈2.646.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半正多面體(semiregular solid) 亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com