分析 (1)根據(jù)函數(shù)的解析式,求出函數(shù)的定義域滿足條件,進(jìn)而根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),計(jì)算f(x)+f(y)與f(x+y1+xy)并進(jìn)行比較,可得答案
(2)利用賦值法先求出f(0)=0,再證出f(x)+f(-x)=f(0)=0,從而得出函數(shù)f(x)在(-1,1)上是奇函數(shù);
(3)(a)-f(b)=f(a)+f(-b)=f(a−b1−ab)=2,f(a)+f(b)=f(a+b1+ab)=1,解得即可.
解答 解:(1)x+y1+xy>0可得-1<x<1,其定義域?yàn)椋?1,1),
又f(x)+f(y)=lg1−x1+x+lg1−y1+y=lg(1−x1+x•g1−y1+y)=lg1−x−y+xy1+x+y+xy=lg1−x+y1+xy1+x+y1+xy=f(x+y1+xy).
函數(shù)f(x)=lg(x+y1+xy)滿足這些條件
(2)函數(shù)f(x)在(-1,1)上是奇函數(shù).
證明:將x=0代入條件,得f(0)+f(y)=f(y),
∴f(0)=0
再令y=-x代入條件,得f(x)+f(-x)=f(0)=0
∴f(-x)=-f(x),
∴f(x)在(-1,1)上是奇函數(shù),
(3)∵|a|<1,|b|<1,
∴f(a)-f(b)=f(a)+f(-b)=f(a−b1−ab)=2,
f(a)+f(b)=f(a+b1+ab)=1,
∴f(a)=32,f(b)=-12.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的奇偶性與函數(shù)的單調(diào)性,及對(duì)數(shù)函數(shù)的圖象和性質(zhì),其中熟練掌握抽象函數(shù)的處理方式,將抽象問(wèn)題具體化是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {5} | B. | {5,8} | C. | {3,7,8} | D. | {3,4,5,6,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com