【題目】一個袋子中有大小和質地相同的4個球,其中有有2個紅色球(標號為1和2),2個綠色球(標號為3和4),從袋中不放回地依次隨機摸出2個球.設事件=“第一次摸到紅球”,=“第二次摸到紅球”,R=“兩次都摸到紅球”,G=“兩次都摸到綠球”,M=“兩個球顏色相同”,N=“兩個球顏色不同”.
(1)用集合的形式分別寫出試驗的樣本空間以及上述各事件;
(2)事件R與,R與G,M與N之間各有什么關系?
(3)事件R與事件G的并事件與事件M有什么關系?事件與事件的交事件與事件R有什么關系?
【答案】(1)詳見解析(2)事件包含事件R;事件R與事件G互斥;事件M與事件N互為對立事件(3)事件M是事件R與事件G的并事件;事件R是事件與事件的交事件.
【解析】
(1)利用枚舉法列出試驗的樣本空間,再分別列出各事件的基本事件即可.
(2)根據(jù)互斥與對立事件的定義逐個判斷即可.
(3)根據(jù)事件分析其交并關系即可.
解:(1)所有的試驗結果如圖所示,
用數(shù)組表示可能的結果,是第一次摸到的球的標號,是第二次摸到的球的標號,則試驗的樣本空間
事件=“第一次摸到紅球”,即或2,于是
;
事件=“第二次摸到紅球”,即或2,于是
.
同理,有
,
,
,
.
(2)因為,所以事件包含事件R;
因為,所以事件R與事件G互斥;
因為,,所以事件M與事件N互為對立事件.
(3)因為,所以事件M是事件R與事件G的并事件;
因為,所以事件R是事件與事件的交事件.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為5.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校有高中學生500人,其中男生320人,女生180人.有人為了獲得該校全體高中學生的身高信息,采用分層抽樣的方法抽取樣本,并觀測樣本的指標值(單位:cm),計算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.
(1)根據(jù)以上信息,能夠計算出總樣本的均值和方差嗎?為什么?
(2)如果已知男、女樣本量按比例分配,你能計算出總樣本的均值和方差各為多少嗎?
(3)如果已知男、女的樣本量都是25,你能計算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計合適嗎?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.
(1)求和的標準方程;
(2)過點的直線與交于,與交于,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且).
(1)判斷函數(shù)的奇偶性并說明理由;
(2)當時,判斷函數(shù)在上的單調性,并利用單調性的定義證明;
(3)是否存在實數(shù),使得當的定義域為時,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.
(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標方程;
(2)若曲線與直線相交于不同的兩點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com