【題目】已知函數(shù)(且).
(1)判斷函數(shù)的奇偶性并說明理由;
(2)當(dāng)時,判斷函數(shù)在上的單調(diào)性,并利用單調(diào)性的定義證明;
(3)是否存在實數(shù),使得當(dāng)的定義域為時,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
【答案】(1)奇函數(shù),理由見詳解;(2)單調(diào)遞減,過程見詳解;(3)存在.
【解析】
(1)先由函數(shù)解析式求出定義域,再由,求出,根據(jù)函數(shù)奇偶性的概念,即可得出結(jié)果;
(2)先令,用單調(diào)性的定義,即可判斷的單調(diào)性,再由復(fù)合函數(shù)單調(diào)性的判定原則,即可得出結(jié)果;
(3)先假設(shè)存在滿足條件的實數(shù),由題意得出,,推出是方程的兩根,進而得到在上有兩個不同解,根據(jù)一元二次方程根的分布情況,列出不等式組,即可求出結(jié)果.
(1)由解得或,即函數(shù)的定義域為;
又,
所以,
因此,所以,
所以函數(shù)為奇函數(shù);
(2)令,任取,
則,
因為,,,所以,
即函數(shù)在上單調(diào)遞增;
又,所以單調(diào)遞減,
根據(jù)同增異減的原則,可得:在上單調(diào)遞減;
(3)假設(shè)存在實數(shù),使得當(dāng)的定義域為時,值域為,由,可得;
所以,
因此是方程的兩根,
即在上有兩個不同解,
設(shè),則,解得.
所以存在,使得當(dāng)的定義域為時,值域為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應(yīng)的等候人數(shù),再求與實際等候人數(shù)的差,若差值的絕對值都不超過,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這組數(shù)據(jù)中隨機選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時間不相鄰的概率;
(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;
(3)為了使等候的乘客不超過人,試用(2)中方程估計間隔時間最多可以設(shè)置為多少(精確到整數(shù))分鐘.
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋子中有大小和質(zhì)地相同的4個球,其中有有2個紅色球(標(biāo)號為1和2),2個綠色球(標(biāo)號為3和4),從袋中不放回地依次隨機摸出2個球.設(shè)事件=“第一次摸到紅球”,=“第二次摸到紅球”,R=“兩次都摸到紅球”,G=“兩次都摸到綠球”,M=“兩個球顏色相同”,N=“兩個球顏色不同”.
(1)用集合的形式分別寫出試驗的樣本空間以及上述各事件;
(2)事件R與,R與G,M與N之間各有什么關(guān)系?
(3)事件R與事件G的并事件與事件M有什么關(guān)系?事件與事件的交事件與事件R有什么關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的值域;
(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
討論函數(shù)的單調(diào)性;
當(dāng)時,求函數(shù)在區(qū)間上的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com