【題目】如圖1,已知菱形的對角線交于點,點為線段的中點,,,將三角形沿線段折起到的位置,,如圖2所示.

(Ⅰ)證明:平面 平面;

(Ⅱ)求三棱錐的體積.

【答案】(Ⅰ)見證明;(Ⅱ)

【解析】

(Ⅰ)折疊前,ACDE;,從而折疊后,DEPF,DECF,由此能證明DE⊥平面PCF

再由DCAE,DCAE能得到DCEB,DCEB.說明四邊形DEBC為平行四邊形.可得CBDE.由此能證明平面PBC⊥平面PCF

(Ⅱ)由題意根據(jù)勾股定理運算得到,又由(Ⅰ)的結(jié)論得到 ,可得平面,再利用等體積轉(zhuǎn)化有,計算結(jié)果.

(Ⅰ)折疊前,因為四邊形為菱形,所以;

所以折疊后,, 又,平面,

所以平面

因為四邊形為菱形,所以

又點為線段的中點,所以

所以四邊形為平行四邊形.

所以

平面,所以平面

因為平面,所以平面平面

(Ⅱ)圖1中,由已知得,,

所以圖2中,,又

所以,所以

平面,所以

,平面

所以平面,

所以

所以三棱錐的體積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計出這些試卷總分,由總分得到如下的頻率分別直方圖.

(1)求這100份數(shù)學(xué)試卷成績的中位數(shù);

(2)從總分在的試卷中隨機抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,為了測量某一隧道兩側(cè)A、B兩地間的距離,某同學(xué)首先選定了不在直線AB上的一點C中∠A、∠B、∠C所對的邊分別為a、b、c),然后確定測量方案并測出相關(guān)數(shù)據(jù),進行計算.現(xiàn)給出如下四種測量方案;①測量∠A,∠C,b;②測量∠A,∠B,∠C;③測量a,bC;④測量∠AB,a,則一定能確定A、B間距離的所有方案的序號為(

A.①③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合, 是集合的所有子集組成的集合.若集合滿足對任意的映射,總存在,使得成立,其中,表示集合的子集的補集,為給定的正整數(shù).試求所有滿足上述條件的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半期考試后,班長小王統(tǒng)計了50名同學(xué)的數(shù)學(xué)成績,繪制頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖,估計這50名同學(xué)的數(shù)學(xué)平均成績;

用分層抽樣的方法從成績低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績均在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)圖象經(jīng)過的定點坐標(biāo);

(2)當(dāng)時,求曲線在點處的切線方程及函數(shù)單調(diào)區(qū)間;

(3)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某兒童樂園在六一兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:

,則獎勵玩具一個;

,則獎勵水杯一個;

其余情況獎勵飲料一瓶.

假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準(zhǔn)備參加此項活動.

)求小亮獲得玩具的概率;

)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4,極坐標(biāo)與參數(shù)方程

已知在平面直角坐標(biāo)系中,為坐標(biāo)原點,曲線為參數(shù)),在以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)直線軸的交點,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.

查看答案和解析>>

同步練習(xí)冊答案