精英家教網 > 高中數學 > 題目詳情

【題目】設集合, 是集合的所有子集組成的集合.若集合滿足對任意的映射,總存在,使得成立,其中,表示集合的子集的補集,為給定的正整數.試求所有滿足上述條件的集合.

【答案】見解析

【解析】

.若存在有限子集,滿足.

首先證明:存在映射,對任意的集合,均有.

設集合的全部子集構成的集合為,

其中,,,,.

定義映射,,則對任意的,均有.

定義映射,對于任意的,設..

定義

其中,.則對任意的,均有.

因此,對于映射,若不存在集合,使得,則.

其次證明:對任何有限集,均滿足題設條件.

反證法.

假設存在映射,使得對任意的,均有.

任取,由是有限集,故必存在整數,使得,且對任意的、,有.

..

同理,,……

.

由此知.

所以,,與不含不為1的奇數因子矛盾.

因此,不存在這樣的映射,使得對任意的,均有,即對任一映射,均存在,有.

從而,必為所有元素個數小于或等于的實數的集合.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】經調查,3個成年人中就有一個高血壓,那么什么是高血壓?血壓多少是正常的?經國際衛(wèi)生組織對大量不同年齡的人群進行血壓調查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

其中: , ,

(1)請畫出上表數據的散點圖;

(2)請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;(的值精確到0.01)

(3)若規(guī)定,一個人的收縮壓為標準值的0.9~1.06倍,則為血壓正常人群;收縮壓為標準值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標準值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標準值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?

【答案】(1)答案見解析;(2) (3)中度高血壓人群.

【解析】試題分析:(1將數據對應描點,即得散點圖,2先求均值,再代人公式求,利用,(3根據回歸直線方程求自變量為180時對應函數值,再求與標準值的倍數,確定所屬人群.

試題解析:(1)

(2)

∴回歸直線方程為.

3)根據回歸直線方程的預測,年齡為70歲的老人標準收縮壓約為mmHg

∴收縮壓為180mmHg的70歲老人為中度高血壓人群.

型】解答
束】
19

【題目】如圖,四棱柱的底面為菱形, , , 中點.

(1)求證: 平面;

(2)若底面,且直線與平面所成線面角的正弦值為,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等比數列的公比為,其前項和為,前項之積為,并且滿足條件:,,下列結論中正確的是( )

A. B.

C. 是數列中的最大值 D. 數列無最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓的右焦點為,點在橢圓上,過原點的直線與橢圓相交于、兩點,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)設,,過點且斜率不為零的直線與橢圓相交于兩點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為直平行六面體.命題為正方體;命題的任意體對角線與其不相交的面對角線垂直.則命題是命題的( )條件 .

A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點到直線的距離為.

(1)求拋物線的標準方程;

(2)設點是拋物線上的動點,若以點為圓心的圓在軸上截得的弦長均為4,求證:圓恒過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,已知菱形的對角線交于點,點為線段的中點,,,將三角形沿線段折起到的位置,,如圖2所示.

(Ⅰ)證明:平面 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

()時,求曲線在點處的切線方程;

()時,若在區(qū)間上的最小值為-2,其中是自然對數的底數,求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為,(θ為參數),以原點為極點,x軸非負半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)在平面直角坐標系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點,求ABM面積的最小值.

查看答案和解析>>

同步練習冊答案