設(shè)a=,b=(4sinx,cosx-sinx),f(x)=a·b.
(1) 求函數(shù)f(x)的解析式;
(2) 已知常數(shù)ω>0,若y=f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;
(3) 設(shè)集合A=,B={x||f(x)-m|<2},若AB,求實數(shù)m的取值范圍.
解:(1) f(x)=sin2·4sinx+(cosx+sinx)·(cosx-sinx)
=4sinx·+cos2x
=2sinx(1+sinx)+1-2sin2x=2sinx+1,
所以所求解析式為f(x)=2sinx+1.
(2) ∵f(ωx)=2sinωx+1,ω>0,
由2kπ-≤ωx≤2kπ+,
得f(ωx)的增區(qū)間是,k∈Z.
∵f(ωx)在上是增函數(shù),
∴.
(3) 由|f(x)-m|<2,得-2<f(x)-m<2,
即f(x)-2<m<f(x)+2.
∵AB,∴當(dāng)≤x≤π時,
不等式f(x)-2<m<f(x)+2恒成立.
∴f(x)max-2<m<f(x)min+2,
∵f(x)max=f=3,f(x)min=f=2,
∴m∈(1,4).
科目:高中數(shù)學(xué) 來源: 題型:
為了得到函數(shù)y=2sin (x∈R)的圖象,只需把函數(shù)y=2sinx(x∈R)的圖象上所有的點經(jīng)過怎樣的變換得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知一扇形的中心角是α,所在圓的半徑是R.
(1) 若α=60°,R=10cm,求扇形的弧長及該弧所在的弓形面積;
(2) 若扇形的周長是一定值C(C>0),當(dāng)α為多少弧度時,該扇形有最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+y2=1的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.
(1) 當(dāng)直線AM的斜率為1時,求點M的坐標(biāo);
(2) 當(dāng)直線AM的斜率變化時,直線MN是否過x軸上的一定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com