【題目】若f(x)是奇函數(shù),且在(0,+∞)上是增函數(shù),又f(﹣3)=0,則(x﹣1)f(x)<0的解是(
A.(﹣3,0)∪(1,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,0)∪(1,3)

【答案】D
【解析】解:∵f(x)是R上的奇函數(shù),且在(0,+∞)內(nèi)是增函數(shù), ∴在(﹣∞,0)內(nèi)f(x)也是增函數(shù),
又∵f(﹣3)=0,∴f(3)=0
∴當x∈(﹣∞,﹣3)∪(0,3)時,f(x)<0;
當x∈(﹣3,0)∪(3,+∞)時,f(x)>0;
∵(x﹣1)f(x)<0

解可得﹣3<x<0或1<x<3
∴不等式的解集是(﹣3,0)∪(1,3)
故選D.
【考點精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識可以得到問題的答案,需要掌握奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對一批共50件的某電器進行分類檢測,其重量(克)統(tǒng)計如下:

質(zhì)量段

[80,85)

[85,90)

[90,95)

[95,100]

件數(shù)

5

a

15

b

規(guī)定重量在82克及以下的為“A”型,重量在85克及以上的為“B”型,已知該批電器有“A“型2件
(1)從該批電器中任選1件,求其為“B”型的概率;
(2)從重量在[80,85)的5件電器中,任選2件,求其中恰有1件為“A”型的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,向量 =(2sinB,﹣ ), =(cos2B,2cos2 ﹣1)且
(1)求銳角B的大小;
(2)如果b=2,求△ABC的面積SABC的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊分別為a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取60名學生,將其期中考試的數(shù)學成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如下頻率分布直方圖.

(1)求分數(shù)在[70,80)內(nèi)的頻率;
(2)根據(jù)頻率分布直方圖,估計該校高一年級學生期中考試數(shù)學成績的平均分;
(3)用分層抽樣的方法在80分以上的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意選取2人,求其中恰有1人的分數(shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,B=45°,AC= ,cosC= ,求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點A(3,2),B(﹣1,2),圓C以線段AB為直徑. (Ⅰ)求圓C的方程;
(Ⅱ)求過點M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知a+b=5,c= ,且4sin2 ﹣cos2C=
(1)求角C的大;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0,它們所表示的曲線可能是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案