【題目】已知拋物線,直線交此拋物線于不同的兩個(gè)點(diǎn)、

)當(dāng)直線過點(diǎn)時(shí),證明為定值.

)當(dāng)時(shí),直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);反之,請(qǐng)說明理由.

)記,如果直線過點(diǎn),設(shè)線段的中點(diǎn)為,線段的中點(diǎn)為.問是否存在一條直線和一個(gè)定點(diǎn),使得點(diǎn)到它們的距離相等?若存在,求出這條直線和這個(gè)定點(diǎn);若不存在,請(qǐng)說明理由.

【答案】(1)見解析;(2);(3)直線,點(diǎn)

【解析】試題分析:(1)易判斷直線有斜率且不為0,設(shè),代入拋物線方程消掉 的二次方程,由韋達(dá)定理即可證明;
(2)分情況討論:①當(dāng)直線的斜率存在時(shí),設(shè),其中,代入拋物線方程消掉 的二次方程,由韋達(dá)定理及的關(guān)系式,假設(shè)直線過定點(diǎn),則,用消掉即可得到定點(diǎn)坐標(biāo);
②當(dāng)直線的斜率不存在,設(shè),代入拋物線方程易求,由已知可求得 可判斷此時(shí)直線也過該定點(diǎn);
(3)易判斷直線存在斜率且不為0,由(1)及中點(diǎn)坐標(biāo)公式可得,代入直線方程得,設(shè),由中點(diǎn)坐標(biāo)公式可得點(diǎn)軌跡的參數(shù)方程,消掉參數(shù)后即得其普通方程,由方程及拋物線定義可得準(zhǔn)線、焦點(diǎn)即為所求;

試題解析:)證明:過點(diǎn)與拋物線有兩個(gè)交點(diǎn),可知其斜率一定存在,

設(shè),其中(若時(shí)不合題意),

,

①當(dāng)直線的斜率存在時(shí),設(shè),其中(若時(shí)不合題意).

,

,從而

假設(shè)直線過定點(diǎn),則

從而,得,即,即或定點(diǎn)

②當(dāng)直線的斜率不存在,設(shè),代入,,

,

解得,即,也過

綜上所述,當(dāng)時(shí),直線過定點(diǎn)

)依題意直線的斜率存在且不為零.

由()得,點(diǎn)的縱坐標(biāo)為,

代入,即

設(shè),則,消,

由拋物線的定義知,存在直線,點(diǎn),點(diǎn)到它們的距離相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二戰(zhàn)中盟軍為了知道德國(guó)“虎式”重型坦克的數(shù)量,采用了兩種方法,一種是傳統(tǒng)的情報(bào)竊取,一種是用統(tǒng)計(jì)學(xué)的方法進(jìn)行估計(jì),統(tǒng)計(jì)學(xué)的方法最后被證實(shí)比傳統(tǒng)的情報(bào)收集更精確,德國(guó)人在生產(chǎn)坦克時(shí)把坦克從1開始進(jìn)行了連續(xù)編號(hào),在戰(zhàn)爭(zhēng)期間盟軍把繳獲的“虎式”坦克的編號(hào)進(jìn)行記錄,并計(jì)算出這些編號(hào)的平均值為675.5,假設(shè)繳獲的坦克代表了所有坦克的一個(gè)隨機(jī)樣本,則利用你所學(xué)過的統(tǒng)計(jì)知識(shí)估計(jì)德國(guó)共制造“虎式”坦克大約有(
A.1050輛
B.1350輛
C.1650輛
D.1950輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱中,,分別是 的中點(diǎn),,為棱上的點(diǎn).

(1)證明:

(2)是否存在一點(diǎn),使得平面與平面所成銳二面角的余弦值為?若存在,說明點(diǎn)的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若,則稱的“不動(dòng)點(diǎn)”;若,則稱的“穩(wěn)定點(diǎn)”.函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C:ρ2﹣4ρcosθ+1=0,直線l: (t為參數(shù),0≤α<π).
(1)求曲線C的參數(shù)方程;
(2)若直線l與曲線C相切,求直線l的傾斜角及切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長(zhǎng)為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大。
(Ⅲ)在棱AE上是否存在點(diǎn)F,使得DF∥平面BCE?若存在,求 的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= eax(a>0).
(1)當(dāng)a=2時(shí),求曲線y=f(x)在x= 處的切線方程;
(2)討論方程f(x)﹣1=0根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E、F分別為棱DD1和BC中點(diǎn)G為棱A1B1上任意一點(diǎn),則直線AE與直線FG所成的角為(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案