【題目】已知函數(shù)f(x)= e﹣ax(a>0).
(1)當(dāng)a=2時,求曲線y=f(x)在x= 處的切線方程;
(2)討論方程f(x)﹣1=0根的個數(shù).
【答案】
(1)解:當(dāng)a=2時,f(x)= e﹣2x.f( )=3e﹣1,
又f′(x)= e﹣2x,∴f′( )=2e﹣1,
故所求切線方程為y﹣3e﹣1=2e﹣1(x﹣ ),即y= x+
(2)解:方程f(x)﹣1=0即f(x)=1.
f(x)的定義域為(﹣∞,1)∪(1,+∞),
當(dāng)x<﹣1或x>1時,易知f(x)<0,故方程f(x)=1無解;
故只需考慮﹣1≤x≤1的情況,
f′(x)= e﹣2x,
當(dāng)<a≤2時,f′(x)≥0,所以f(x)區(qū)間[﹣1,1)上是增函數(shù),又易知f(0)=1,
所以方程f(x)=1只有一個根0;
當(dāng)a>2時,由f′(x)=0可得x=± ,且0< <1,
由f′(x)>0可得﹣1≤x<﹣ 或 <x<1,
由f′(x)<0可得﹣ <x< ,
所以f(x)單調(diào)增區(qū)間為[﹣1,﹣ )和( ,1)上是增函數(shù),
f(x)單調(diào)減區(qū)間為(﹣ , ),
由上可知f( )<f(0)<f(﹣ ),即f( )<1<f(﹣ ),
在區(qū)間(﹣ , span> )上f(x)單調(diào)遞減,且f(0)=1,
所以方程f(x)=1有唯一的根x=0;
在 區(qū)間[﹣1,﹣ )上f(x)單調(diào)遞增,且f(﹣1)=0<1,f(﹣ )>1,
所以方程f(x)=1存在唯一的根0
在區(qū)間( ,1)上,由f( )<1,x→1時,f(x)→+∞,
所以方程f(x)=1有唯一的根;
綜上所述:當(dāng)0<a≤2時,方程f(x)=1有1個根;
當(dāng)a>2時,方程f(x)=1有3個根
【解析】(1)當(dāng)a=2時,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解即可.(2)由f(x)﹣1=0得f(x)=1,求函數(shù)的導(dǎo)數(shù)f′(x),判斷函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性和最值之間的關(guān)系進(jìn)行判斷即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在用120分鐘做150分的數(shù)學(xué)試卷(分為卷Ⅰ和卷Ⅱ兩部分)時,卷Ⅰ和卷Ⅱ所得分?jǐn)?shù)分別為P(單位:分)和Q(單位:分),在每部分做了20分鐘的條件下發(fā)現(xiàn)它們與投入時間m(單位:分鐘)的關(guān)系有經(jīng)驗公式,.
(1)試建立數(shù)學(xué)總成績y(單位:分)與對卷Ⅱ投入時間x(單位:分鐘)的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)如何計劃使用時間,才能使得所得分?jǐn)?shù)最高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線交此拋物線于不同的兩個點、.
()當(dāng)直線過點時,證明,為定值.
()當(dāng)時,直線是否過定點?若過定點,求出定點坐標(biāo);反之,請說明理由.
()記,如果直線過點,設(shè)線段的中點為,線段的中點為.問是否存在一條直線和一個定點,使得點到它們的距離相等?若存在,求出這條直線和這個定點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與軸負(fù)半軸相交于點,與軸正半軸相交于點.
(1)若過點的直線被圓截得的弦長為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點,使得 (為坐標(biāo)原點),求的取值范圍;
(3)設(shè)是圓上的兩個動點,點關(guān)于原點的對稱點為,點關(guān)于軸的對稱點為,如果直線與軸分別交于和,問是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)m的取值范圍;
(Ⅱ)是否存在首項為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項和Sn滿足 ?若存在,求出{an}的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語文樂隊理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗證這個結(jié)論,從該校選擇甲乙兩個同軌班級進(jìn)行試驗,其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時間后進(jìn)行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
(1)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時
間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時間在6—8
分鐘,現(xiàn)小明.小剛同時獨立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比
小明先正確解答完的概率;
(2)現(xiàn)從乙班成績優(yōu)秀的8名同學(xué)中任意抽取兩人,并對他們的答題情況進(jìn)行全程研究,記A.B兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在成立,則稱的不動點.如果函數(shù)
有且只有兩個不動點0,2,且
(1)求函數(shù)的解析式;
(2)已知各項不為零的數(shù)列,求數(shù)列通項;
(3)如果數(shù)列滿足,求證:當(dāng)時,恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,梯形中,∥,,, ,將沿對角線折起.設(shè)折起后點的位置為,并且平面 平面.給出下面四個命題:
①;②三棱錐的體積為;③ 平面;
④平面平面.其中正確命題的序號是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是 .
(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ.求ξ的分布列及數(shù)學(xué)期望E(ξ).( 結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com