【題目】某同學(xué)在用120分鐘做150分的數(shù)學(xué)試卷(分為卷Ⅰ和卷Ⅱ兩部分)時,卷Ⅰ和卷Ⅱ所得分?jǐn)?shù)分別為P(單位:分)和Q(單位:分),在每部分做了20分鐘的條件下發(fā)現(xiàn)它們與投入時間m(單位:分鐘)的關(guān)系有經(jīng)驗公式,.
(1)試建立數(shù)學(xué)總成績y(單位:分)與對卷Ⅱ投入時間x(單位:分鐘)的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)如何計劃使用時間,才能使得所得分?jǐn)?shù)最高.
【答案】(1),其定義域為[20,100].
(2)當(dāng)卷Ⅰ用45分鐘,卷Ⅱ用75分鐘時,所得分?jǐn)?shù)最高.
【解析】
試題分析:(1)當(dāng)對卷Ⅱ投入時間時,對卷Ⅱ投入時間為,分別代入,的解析式,由可得所求函數(shù)的關(guān)系式.(2)令可使的函數(shù)為二次函數(shù),可求得當(dāng)=,即時,.
試題解析:(1) 對卷Ⅱ用分鐘,則對卷Ⅰ用(120-)分鐘,
所以=" P" + Q =" 65+" 2+(120-)+36=-+2+ 125,
其定義域為
(2)令t =,則函數(shù)為關(guān)于的二次函數(shù)
=-=-(-)+ 140 .
所以當(dāng)=,即=75時,=140
答:當(dāng)卷Ⅰ用45分鐘,卷Ⅱ用75分鐘時,所得分?jǐn)?shù)最高.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在第一象限內(nèi)的點到焦點的距離為.
(1)若,過點, 的直線與拋物線相交于另一點,求的值;
(2)若直線與拋物線相交于兩點,與圓相交于兩點, 為坐標(biāo)原點, ,試問:是否存在實數(shù),使得的長為定值?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二戰(zhàn)中盟軍為了知道德國“虎式”重型坦克的數(shù)量,采用了兩種方法,一種是傳統(tǒng)的情報竊取,一種是用統(tǒng)計學(xué)的方法進行估計,統(tǒng)計學(xué)的方法最后被證實比傳統(tǒng)的情報收集更精確,德國人在生產(chǎn)坦克時把坦克從1開始進行了連續(xù)編號,在戰(zhàn)爭期間盟軍把繳獲的“虎式”坦克的編號進行記錄,并計算出這些編號的平均值為675.5,假設(shè)繳獲的坦克代表了所有坦克的一個隨機樣本,則利用你所學(xué)過的統(tǒng)計知識估計德國共制造“虎式”坦克大約有( )
A.1050輛
B.1350輛
C.1650輛
D.1950輛
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的圓心在直線上,且經(jīng)過點A(-3,0),B(1,2).
(1)求圓M的方程;
(2)直線與圓M相切,且在y軸上的截距是在x軸上截距的兩倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅游社為某旅游團包飛機去旅游,其中旅行社的包機費為15 000元.旅游團中每人的飛機票按以下方式與旅行社結(jié)算:若旅游團人數(shù)在30人或30人以下,飛機票每張收費900元;若旅游團人數(shù)多于30人,則給予優(yōu)惠,每多1人,機票費每張減少10元,但旅游團人數(shù)最多為75人.
(1)寫出飛機票的價格關(guān)于旅游團人數(shù)的函數(shù);
(2)旅游團人數(shù)為多少時,旅行社可獲得最大利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中,,分別是 的中點,,為棱上的點.
(1)證明:;
(2)是否存在一點,使得平面與平面所成銳二面角的余弦值為?若存在,說明點的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= e﹣ax(a>0).
(1)當(dāng)a=2時,求曲線y=f(x)在x= 處的切線方程;
(2)討論方程f(x)﹣1=0根的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com