【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關系式;
(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:
某大學畢業(yè)生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關系是一次函數(shù)的關系式,而乙公司是分段函數(shù)的關系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學期望,進而可得結論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)的關系式為: .
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)的關系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會選擇去乙公司.
點睛:求解離散型隨機變量的數(shù)學期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機變量取每個值時的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質檢驗所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機變量的數(shù)學期望的定義求期望的值
【題型】解答題
【結束】
19
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點.
(1)證明: ;
(2)設為線段上的動點,若線段長的最小值為,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據(jù)題意易得,然后根據(jù)等邊三角形的性質可得,又,因此得平面,從而得證(2)先找到EH什么時候最短,顯然當線段長的最小時, ,在中, , , ,∴,由中, , ,∴.然后建立空間直角坐標系,寫出兩個面法向量再根據(jù)向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形, ,
∴為正三角形.又為的中點,∴.
又,因此.
∵平面, 平面,∴.
而平面, 平面且,
∴平面.又平面,∴.
(2)如圖, 為上任意一點,連接, .
當線段長的最小時, ,由(1)知,
∴平面, 平面,故.
在中, , , ,
∴,
由中, , ,∴.
由(1)知, , 兩兩垂直,以為坐標原點,建立如圖所示的空間直角坐標系,又, 分別是, 的中點,
可得, , , ,
, , ,
所以, .
設平面的一法向量為,
則因此,
取,則,
因為, , ,所以平面,
故為平面的一法向量.又,
所以 .
易得二面角為銳角,故所求二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的頂點是原點,以軸為對稱軸,且經(jīng)過點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設點, 在拋物線上,直線, 分別與軸交于點, , .求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,、分別為橢圓的左、右頂點,點滿足.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線經(jīng)過點且與交于不同的兩點、,試問:在軸上是否存在點,使得直線 與直線的斜率的和為定值?若存在,請求出點的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù), ),以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求曲線與的直角坐標方程;
(2)當與有兩個公共點時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為__________.
【答案】或
【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當a<0時,則平行AC直線即可故a=-2,當a>0時,則直線平行AB即可,故a=1
點睛:線性規(guī)劃為常考題型,解決此題務必要理解最優(yōu)解個數(shù)為無數(shù)個時的條件是什么,然后根據(jù)幾何關系求解即可
【題型】填空題
【結束】
16
【題目】《數(shù)書九章》三斜求積術:“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實,一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , , 分別為對應的大斜,中斜,小斜上的高;則 .若在中, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在上的最大值為1,求實數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市一批養(yǎng)殖專業(yè)戶投資石金錢龜養(yǎng)殖業(yè),行業(yè)協(xié)會為了了解市場行情,對石金錢龜幼苖銷售價格進行調(diào)查。2017年12月隨機抽取500戶銷售石金錢龜幼苖的平均價格,得到如下不完整的頻率分布統(tǒng)計表:
(Ⅰ)完成統(tǒng)計表。
(Ⅱ)為了向石金錢龜養(yǎng)殖戶提供更好的幼苖銷售參考,協(xié)會決定2018年1月份從第1,3,5組中用分層抽樣方法取出7戶出售幼龜價格跟蹤調(diào)查,求第1,3,5組1月份接受調(diào)查的戶數(shù)。
(Ⅲ)在(Ⅱ)的前提下,協(xié)會決定從選出的7個養(yǎng)殖戶中隨機抽取3戶總結銷售經(jīng)驗.為了鼓勵養(yǎng)殖戶支持調(diào)查工作,協(xié)會決定:發(fā)給第1組被抽到的每戶幸運獎獎金210元,第3組被抽到的每戶幸運獎獎金70元,第5組被抽到的每戶幸運獎獎金140元.記發(fā)出的幸運獎總獎金額為元,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定點的距離比到定直線的距離小1.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點和.設線段, 的中點分別為,求證:直線恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)若直線與圓相交于, 兩點,求弦長;
(2)以該直角坐標系的原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,圓和圓的交點為, ,求弦所在直線的直角坐標方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com