【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù), ),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程;

(2)當(dāng)有兩個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

【答案】(1)曲線的直角坐標(biāo)方程為;(2).

【解析】試題分析:(1)第一問直接利用恒等消參法把曲線的參數(shù)方程化為直角坐標(biāo)方程,利用極直互化的公式把的極坐標(biāo)方程化為直角坐標(biāo);(2)第二問,畫出曲線曲線對(duì)應(yīng)的半圓弧,再畫出曲線對(duì)應(yīng)的直線,利用數(shù)形結(jié)合分析得到t的取值范圍.

試題解析:(1)∵曲線的參數(shù)方程為為參數(shù), ),

∴曲線的普通方程為: , ),

∵曲線的極坐標(biāo)方程為,

∴曲線的直角坐標(biāo)方程為

(2)∵曲線的普通方程為: , )為半圓弧,由曲線有兩個(gè)公共點(diǎn),則當(dāng)相切時(shí),得,整理得,

(舍去),

當(dāng)過點(diǎn)時(shí), ,所以t=-1.

∴當(dāng)有兩個(gè)公共點(diǎn)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,已知側(cè)面,,,,點(diǎn)在棱上.

)求證:平面;

)試確定點(diǎn)的位置,使得二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品集團(tuán)生產(chǎn)的火腿按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)依次為1,23,8,其中為標(biāo)準(zhǔn), 為標(biāo)準(zhǔn).已知甲車間執(zhí)行標(biāo)準(zhǔn),乙車間執(zhí)行標(biāo)準(zhǔn)生產(chǎn)該產(chǎn)品,且兩個(gè)車間的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn).

1)已知甲車間的等級(jí)系數(shù)的概率分布列如下表,若的數(shù)學(xué)期望E(X1)=6.4,求 的值;

X1

5

6

7

8

P

0.2

2)為了分析乙車間的等級(jí)系數(shù),從該車間生產(chǎn)的火腿中隨機(jī)抽取30根,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7

用該樣本的頻率分布估計(jì)總體,將頻率視為概率,求等級(jí)系數(shù)的概率分布列和均值;

3)從乙車間中隨機(jī)抽取5根火腿,利用(2)的結(jié)果推斷恰好有三根火腿能達(dá)到標(biāo)準(zhǔn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)函數(shù)的圖象能否與軸相切?若能,求出實(shí)數(shù),若不能,請(qǐng)說(shuō)明理由;

(Ⅱ)求最大的整數(shù),使得對(duì)任意,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f'(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)

(1)b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

(2)證明:b2>3a;

(3)f(x),f'(x)這兩個(gè)函數(shù)的所有極值之和不小于-,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點(diǎn).

(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;

(Ⅱ)把直線軸的交點(diǎn)記為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

【答案】(I)見解析; (Ⅱ)見解析.

【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.

詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:) 與銷售件數(shù)的關(guān)系式為: .

乙公司一名推銷員的日工資 (單位: ) 與銷售件數(shù)的關(guān)系式為:

()記甲公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

記乙公司一名推銷員的日工資為 (單位: ),由條形圖可得的分布列為

120

128

144

160

0.2

0.3

0.4

0.1

∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.

點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:

第一步是判斷取值,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;

第二步是探求概率,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;

第三步是寫分布列,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;

第四步是求期望值,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值

型】解答
結(jié)束】
19

【題目】如圖,在四棱錐中,底面為菱形, 平面, , , 分別是, 的中點(diǎn).

(1)證明: ;

(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長(zhǎng)的最小值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為探索課堂教學(xué)改革,江門某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和導(dǎo)學(xué)案兩種教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn)。為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),得到如下莖葉圖。記成績(jī)不低于70分者為成績(jī)優(yōu)良”。

Ⅰ)請(qǐng)大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說(shuō)明理由;

Ⅱ)構(gòu)造一個(gè)教學(xué)方式與成績(jī)優(yōu)良列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

(附:,其中是樣本容量)

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, 分別是角的對(duì)邊,已知,現(xiàn)有以下判斷:

不可能等于15; ②;

③作關(guān)于的對(duì)稱點(diǎn)的最大值是;

④若為定點(diǎn),則動(dòng)點(diǎn)的軌跡圍成的封閉圖形的面積是。請(qǐng)將所有正確的判斷序號(hào)填在橫線上______________。

查看答案和解析>>

同步練習(xí)冊(cè)答案