【題目】已知曲線y=5,:

(1)曲線上與直線y=2x-4平行的切線方程.

(2)求過點(diǎn)P(0,5),且與曲線相切的切線方程.

【答案】(1)16x-8y+25=0;(2)5x-4y+20=0.

【解析】

試題(1)求導(dǎo)數(shù),利用曲線與直線y=2x﹣4平行,求出切點(diǎn)坐標(biāo),即可求出曲線與直線y=2x﹣4平行的切線的方程.

(2)設(shè)切點(diǎn),可得切線方程,代入P,可得切點(diǎn)坐標(biāo),即可求出過點(diǎn)P(0,5)且與曲線相切的直線的方程.

試題解析:

(1)設(shè)切點(diǎn)為(x0,y0),y=5,y′=.

所以切線與y=2x-4平行,

所以=2,所以x0=,所以y0=.

則所求切線方程為y-=2,

16x-8y+25=0.

(2)因?yàn)辄c(diǎn)P(0,5)不在曲線y=5,

故需設(shè)切點(diǎn)坐標(biāo)為M(x1,y1),

則切線斜率為.

又因?yàn)榍芯斜率為,

所以==,

所以2x1-2=x1,x1=4.

所以切點(diǎn)為M(4,10),斜率為,

所以切線方程為y-10=(x-4),

5x-4y+20=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

(Ⅱ)當(dāng)時(shí),求零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國(guó)古代第一部數(shù)學(xué)專著,全書總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就!案鄿p損術(shù)”便出自其中,原文記載如下:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也!逼浜诵乃枷刖幾g成如示框圖,若輸入的,分別為45,63,則輸出的為( )

A. 2B. 3C. 5D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點(diǎn)。

(1)若的中點(diǎn)為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和零點(diǎn);

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:當(dāng)成立時(shí),總可推出 成立那么下列命題中正確的是(

A.成立,則當(dāng)時(shí)均有成立

B.成立,則當(dāng)時(shí)均有成立

C.成立,則當(dāng)時(shí)均有成立

D.成立,則當(dāng)時(shí)均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在教材中,我們已研究出如下結(jié)論:平面內(nèi)條直線最多可將平面分成個(gè)部分.現(xiàn)探究:空間內(nèi)個(gè)平面最多可將空間分成多少個(gè)部分,.設(shè)空間內(nèi)個(gè)平面最多可將空間分成個(gè)部分.

(1)求的值;

(2)用數(shù)學(xué)歸納法證明此結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時(shí)期專著的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了組建一支業(yè)余足球隊(duì),在高一年級(jí)隨機(jī)選取50名男生測(cè)量身高,發(fā)現(xiàn)被測(cè)男生的身高全部在之間,將測(cè)量結(jié)果按如下方式分成六組:第1,第2,,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學(xué)校要從中選1名男生擔(dān)任足球隊(duì)長(zhǎng),求被選取的男生恰好在第5組或第6組的概率;

2)試估計(jì)該校高一年級(jí)全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)與中位數(shù);

3)現(xiàn)在從第5與第6組男生中選取兩名同學(xué)擔(dān)任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案