【題目】某中學為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現(xiàn)被測男生的身高全部在到之間,將測量結果按如下方式分成六組:第1組,第2組,…,第6組,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.
(1)若學校要從中選1名男生擔任足球隊長,求被選取的男生恰好在第5組或第6組的概率;
(2)試估計該校高一年級全體男生身高的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)與中位數(shù);
(3)現(xiàn)在從第5與第6組男生中選取兩名同學擔任守門員,求選取的兩人中最多有1名男生來自第5組的概率.
【答案】(1)0.12;(2)平均數(shù)為168.72,中位數(shù)為168.25;(3).
【解析】
(1)由直方圖可得,被選取的男生恰好在第5組或第6組的概率;(2)每個矩形的中點橫坐標與該矩形的縱坐標、組距相乘后求和可得平均值;直方圖左右兩邊面積相等處橫坐標表示中位數(shù);(3)利用列舉法,從第5與第6組男生中選取兩名同學擔任守門員共有15種情況,其中選取的兩人中最多有1名男生來自第5組的情況有9種,由古典概型概率公式可得結果.
(1)被選取的男生恰好在第5組或第6組的概率
.
(2)全體男生身高的平均數(shù)為 .
設全體男生身高的中位數(shù)為,因為第1組對應的頻率為0.20,第2組對應的頻率為0.28,所以,則,解得.
(3)第5組有人,記為,,,,同理第6組有2人記為,,
所有的情況為、、、、、、、、、、、、、、,共15種,
選取的兩人中最多有1名男生來自第5組的有、、、、、、、、共9種,
所以所求概率為.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率;先由計算器給出0到9之間取整數(shù)值的隨機數(shù),指定0、1、2、3表示沒有擊中目標, 4、5、6、7、8、9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù),根據(jù)以下數(shù)據(jù)估計該射擊運動員射擊4次至少擊中3次的概率為( )
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
A.0.4B.0.45C.0.5D.0.55
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖,在空間直角坐標系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個單位長度,得到幾何體如圖一,現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過橢圓E:(a>b>0)的左焦點F1作x軸的垂線交橢圓E于P,Q兩點,點A,B是橢圓E的頂點,且AB∥OP,F2為右焦點,△PF2Q的周長為8.
(1)求橢圓E的方程;
(2)過點F1作直線l與橢圓E交于C,D兩點,若△OCD的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中,,點是中點,且,現(xiàn)將三角形沿折起,使點到達點的位置,且與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,,,F分別在線段BC和AD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF.
Ⅰ求證:平面MFD;
Ⅱ若,求證:;
Ⅲ求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,三棱錐放置在以為直徑的半圓面上,為圓心,為圓弧上的一點,為線段上的一點,且,,.
(Ⅰ)求證:平面平面;
(Ⅱ)當二面角的平面角為時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com