【題目】如圖,矩形ABCD中,F分別在線段BCAD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF

求證:平面MFD

,求證:;

求四面體NFEC體積的最大值.

【答案】(1)見解析(2)見解析(3)

【解析】

試題分析:(1)證明:因?yàn)樗倪呅?/span>MNEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD

所以四邊形MNCD是平行四邊形,所以NC∥MD,因?yàn)?/span>NC平面MFD,所以NC∥平面MFD4

2)證明:連接ED,設(shè)ED∩FC=O.因?yàn)槠矫?/span>MNEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF, 5

所以FC⊥NE.又EC=CD,所以四邊形ECDF為正方形,所以 FC⊥ED.所以FC⊥平面NED,

所以ND⊥FC8

3)解:設(shè)NE=,則EC=4-,其中0x4.由(1)得NE⊥平面FEC,所以四面體NFEC的體積為,所以.

當(dāng)且僅當(dāng),即x=2時(shí),四面體NFEC的體積有最大值2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且,設(shè)命題:函數(shù)上單調(diào)遞減;命題:函數(shù)上為增函數(shù),

(1)若“”為真,求實(shí)數(shù)的取值范圍

(2)若“”為假,“”為真,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動(dòng)點(diǎn).

證明: ;

若平面分該棱柱為體積相等的兩個(gè)部分,試確定點(diǎn)的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中所有正確命題的序號(hào)為______

若方程表示圓,那么實(shí)數(shù);

已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱,令,則的圖象關(guān)于原點(diǎn)對(duì)稱;

在正方體中,E、F分別是AB的中點(diǎn),則直線CE、F、DA三線共點(diǎn);

冪函數(shù)的圖象不可能經(jīng)過第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家射擊隊(duì)的某隊(duì)員射擊一次,命中7~10環(huán)的概率如表所示:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該射擊隊(duì)員射擊一次 求:

(1)射中9環(huán)或10環(huán)的概率;

(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知與曲線相切的直線,與軸, 軸交于兩點(diǎn), 為原點(diǎn), ,( .

1)求證: 相切的條件是: .

2)求線段中點(diǎn)的軌跡方程;

3)求三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且和直線相切,記動(dòng)圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過的直線交于一點(diǎn),交軸于點(diǎn),過點(diǎn)的垂線交于另一點(diǎn),若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的解析式,并用“五點(diǎn)法作圖”在給出的直角坐標(biāo)系中畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;

(2)設(shè)α∈(0,π),f( )= ,求sinα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案