四棱錐P-ABCD底面是平行四邊形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F(xiàn)分別為AD,PC的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求二面角D-PA-B的余弦值.
考點(diǎn):二面角的平面角及求法,直線與平面平行的判定
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)取PB中點(diǎn)G,連結(jié)FG,AG,證明FG和AE平行且相等,AEFG為平行四邊形,可得EF∥AG.再利用直線和平面平行的判定定理證得EF∥平面PAB.
(2)取PA的中點(diǎn)N,連接BN,DN,∠ANB=θ是二面角D-PA-B的平面角,即可得出結(jié)論.
解答: (1)證明:取PB中點(diǎn)G,連結(jié)FG,AG,
∴FG平行且等于
1
2
BC,AE平行且等于
1
2
BC,
∴FG和AE平行且相等,
∴AEFG為平行四邊形,
∴EF∥AG.
∵AG?平面PAB,而EF不在平面PAB內(nèi),
∴EF∥平面PAB.-------(6分)
(2)解:取PA的中點(diǎn)N,連接BN,DN---(8分)
∵△PAB是等邊三角形,∴BN⊥PA,
∵Rt△PBD≌Rt△ABD,∴PD=AD,∴AN⊥PB,
設(shè)∠ANB=θ是二面角D-PA-B的平面角--(10分)
∴BD⊥面PAB,BD⊥BN,
在Rt△DBN中,BD=
3
AB=2BN,-------------(12分)
tanθ=
BD
BN
=2,cosθ=
5
5
,
∴二面角D-PA-B的余弦值為:
5
5
---------(14分)
點(diǎn)評(píng):本題主要考查直線和平面平行的判定定理的應(yīng)用,直線和平面垂直的判定定理的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

底面是菱形的棱柱其側(cè)棱垂直于底面,且側(cè)棱長(zhǎng)為5,它的對(duì)角線的長(zhǎng)分別是9和15,則這個(gè)棱柱的側(cè)面積是( 。
A、130B、140
C、150D、160

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體A-BCD的棱長(zhǎng)為a,且a∈{x|x2-6x+5≤0},則
AB
•(
AC
+
AD
)≥4的概率為( 。
A、
1
4
B、
1
2
C、
2
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+b
ax2+1
是定義在(-1,1)上的奇函數(shù),且f(
1
3
)=
3
10

(1)求函數(shù)f(x)的解析式;
(2)求證:f(x)在(-1,1)上為增函數(shù);
(3)解不等式:f(2t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域和值域:
(1)y=2 (
1
x-1
)
;
(2)y=3
1-x
;
(3)y=5-x-1.
因?yàn)?-x>0,所以5-x-1>-1,所以函數(shù)的值域?yàn)椋?1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),設(shè)函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期與單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C所對(duì)應(yīng)的邊,若f(A)=4,b=1,得面積為
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域:
(1)y=
2x+1
+
3-4x

(2)f(x)=
x+4
x+2

(3)若f(x)的定義域是[1,4],求f(x+2)的定義域?
(4)已知f(2x+1)的定義域?yàn)椋?,1),求f(x)的定義域?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)f(x)的解析式.
(1)已知f(1-2x)=
1-x2
x2
求f(x);
(2)已知f(x)+2f(
1
x
)=5x+9,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上三點(diǎn)A,B,C滿足
BC
=(2-k,3),
AC
=(2,4)
(1)若三點(diǎn)A,B,C不能構(gòu)成三角形,求實(shí)數(shù)k滿足的條件;
(2)若△ABC為直角三角形,求實(shí)數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案