已知正四面體A-BCD的棱長(zhǎng)為a,且a∈{x|x2-6x+5≤0},則
AB
•(
AC
+
AD
)≥4的概率為( 。
A、
1
4
B、
1
2
C、
2
4
D、
3
4
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:解三角形,平面向量及應(yīng)用,概率與統(tǒng)計(jì)
分析:根據(jù)已知條件求得棱長(zhǎng)a所在的區(qū)間為[1,5],然后求出
AB
•(
AC
+
AD
)
=a2,所以由
AB
•(
AC
+
AD
)≥4
得a≥2,且a≤5,即a∈[2,5],所以根據(jù)幾何概型的概率公式得:P=
5-2
5-1
=
3
4
解答: 解:取CD的中點(diǎn)E,連接AE,BE,則AE=BE=
3
2
a
,又AB=a;
∴由余弦定理得:cos∠BAE=
a2+(
3
a
2
)2-(
3
a
2
)2
2a•
3
a
2
=
1
3

AC
+
AD
=2
AE
,∴
AB
•(
AC
+
AD
)=2a•
3
a
2
1
3
=a2
;
∵a∈{x|x2-6x+5≤0}=[1,5]
∴棱長(zhǎng)a所在的區(qū)間為[1,5],由
AB
•(
AC
+
AD
)≥4
得a2≥4,∴a≥2,且a≤5,即
AB
•(
AC
+
AD
)≥4
所對(duì)應(yīng)的棱長(zhǎng)a所在區(qū)間為[2,5];
∴根據(jù)幾何概型的概率公式得,
AB
•(
AC
+
AD
)≥4
的概率為:
5-2
5-1
=
3
4

故選D.
點(diǎn)評(píng):本題考查正四面體的圖形特點(diǎn),向量加法的平行四邊形法則,余弦定理,向量的數(shù)量積,幾何概型的概率公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax(a∈R),若直線x+y+m=0對(duì)任意的m∈R都不是曲線y=f(x)的切線,則實(shí)數(shù)a的取值范圍是( 。
A、a>
1
3
或a<-
1
3
B、a<
1
3
C、a≠
1
3
D、a<-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2x2的圖象的大致形狀是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式(x-4a)(x+2a)<0(a>0)的解集為(x1,x2),且x2-x1=15,則a=(  )
A、
5
2
B、
7
2
C、
15
4
D、
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,若a1+a2=4,a3+a4=12,則a7+a8=( 。
A、16B、28C、32D、108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x-2sin2x+a(a∈R)
(1)若x∈R,求f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[0,
π
2
]時(shí),f(x)的最大值為4,求a的值,并指出此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某運(yùn)輸公司運(yùn)輸貨物的價(jià)格規(guī)定是:如果運(yùn)輸里程不超過100km,運(yùn)費(fèi)是0.5元/km;如果超過100km,超過100km的部分按0.4元/km收費(fèi).
(1)請(qǐng)寫出運(yùn)費(fèi)y與里程數(shù)x之間的函數(shù)關(guān)系式;
(2)當(dāng)里程數(shù)是120km時(shí),運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD底面是平行四邊形,面PAB⊥面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F(xiàn)分別為AD,PC的中點(diǎn).
(1)求證:EF∥平面PAB;
(2)求二面角D-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(0,1),點(diǎn)M是F關(guān)于原點(diǎn)的對(duì)稱點(diǎn).
(1)若橢圓C1的兩個(gè)焦點(diǎn)分別為F,M,且離心率為
1
2
,求橢圓C1的方程;
(2)若動(dòng)點(diǎn)P到定點(diǎn)F的距離等于點(diǎn)P到定直線l:y=-1的距離,求動(dòng)點(diǎn)P的軌跡C2的方程;
(3)過點(diǎn)M作(2)中的軌跡C2的切線,若切點(diǎn)在第一象限,求切線m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案