【題目】若實(shí)數(shù)滿足,則稱比接近
(1)若4比接近0,求的取值范圍;
(2)對(duì)于任意的兩個(gè)不等正數(shù),求證:比接近;
(3)若對(duì)于任意的非零實(shí)數(shù),實(shí)數(shù)比接近,求的取值范圍
【答案】(1);(2)證明見(jiàn)解析;(3)
【解析】
(1)由題意得:|x2﹣3x|>4,則x2﹣3x>4或x2﹣3x<﹣4,由此求得x的范圍.
(2)根據(jù),且,化簡(jiǎn)||﹣|a+b﹣2|的結(jié)果大于零,可得a+b比接近.
(3)由題意對(duì)于x∈R,x≠0恒成立,分類討論求得|x1|的最小值,可得|a+1|的范圍,從而求得a的范圍.
解:(1)由題意得:|x2﹣3x|>4,則x2﹣3x>4或x2﹣3x<﹣4,
由x2﹣3x>4,求得x>4或x<﹣1;由x2﹣3x<﹣4,求得x無(wú)解.
所以x取值范圍為(﹣∞,﹣1)∪(4,+∞).
(2)因?yàn)?/span>a,b>0且a≠b,所以,且,
所以
,
則,
即a+b比接近.
(3)由題意:對(duì)于x∈R,x≠0恒成立,
當(dāng)x>0時(shí),,當(dāng)x=2時(shí)等號(hào)成立,
當(dāng)x<0時(shí),則﹣x>0,,當(dāng)x=﹣2時(shí)等號(hào)成立,所以,則,
綜上.
故由|a+1|<3,求得﹣4<a<2,即a取值范圍為(﹣4,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解社會(huì)對(duì)學(xué)校辦學(xué)質(zhì)量的滿意程度,某學(xué)校決定用分層抽樣的方法從高中三個(gè)年級(jí)的家長(zhǎng)委員會(huì)中共抽取人進(jìn)行問(wèn)卷調(diào)查,已知高一、高二、高三、的家長(zhǎng)委員會(huì)分別有人,人,人.
求從三個(gè)年級(jí)的家長(zhǎng)委員會(huì)分別應(yīng)抽到的家長(zhǎng)人數(shù);
若從抽到的人中隨機(jī)抽取人進(jìn)行調(diào)查結(jié)果的對(duì)比,求這人中至少有一人是高三學(xué)生家長(zhǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線與有相同的漸近線,且經(jīng)過(guò)點(diǎn),
(1)求雙曲線的方程,并寫出其離心率與漸近線方程;
(2)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求實(shí)數(shù)的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】商店出售茶壺和茶杯,茶壺定價(jià)每個(gè)20元,茶杯每個(gè)5元,該商店推出兩種優(yōu)惠辦法:(1)買一個(gè)茶壺贈(zèng)一個(gè)茶杯;(2)按總價(jià)的92%付款.
某顧客需購(gòu)買茶壺4個(gè),茶杯若干個(gè)(不少于4個(gè)),若購(gòu)買茶杯數(shù)x個(gè),付款y(元),分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)關(guān)系式,并討論該顧客買同樣多的茶杯時(shí),兩種辦法哪一種更優(yōu)惠。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四大名著是中國(guó)文學(xué)史上的經(jīng)典作品,是世界寶貴的文化遺產(chǎn).某學(xué)校舉行的“文學(xué)名著閱讀月”活動(dòng)中,甲、乙、丙、丁、戊五名同學(xué)相約去學(xué)校圖書室借閱四大名著《紅樓夢(mèng)》、《三國(guó)演義》、《水滸傳》、《西游記》(每種名著均有若干本),要求每人只借閱一本名著,每種名著均有人借閱,且甲只借閱《三國(guó)演義》,則不同的借閱方案種數(shù)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)集M滿足條件:若,則.
(1)若,求集合M中一定存在的元素;
(2)集合M內(nèi)的元素能否只有一個(gè)?請(qǐng)說(shuō)明理由;
(3)請(qǐng)寫出集合M中的元素個(gè)數(shù)的所有可能值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的偶函數(shù),當(dāng)時(shí),
(1)在給定的坐標(biāo)系中畫出函數(shù)在上的圖像(不用列表);并直接寫出的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(1)討論函數(shù)的單調(diào)性;
(2)若有唯一零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com